1
|
Sun Y, Sun B, Cui X, Li W, Zhang Y, He L, Nong S, Zhu Z, Wu J, Li D, Li X, Zhang S, Li X, Li M. Addressable and perceptible dynamic reprogram of ferromagnetic soft machines. Nat Commun 2025; 16:2267. [PMID: 40050263 PMCID: PMC11885537 DOI: 10.1038/s41467-025-57454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Soft machines actuated by external magnetic fields have gained significant attention for their potential to interact with living organisms and complex environments. However, their adaptability and functionality are often limited by rigid magnetization during operation. In this work, we introduce dynamically reprogrammable magnetic soft machines with in situ reconfigurable magnetization profiles during operations, achieved through the synergy of various magnetic fields. A flexible resonant circuit is integrated into the machine body, enabling addressable and perceptible heating of specific regions via high-frequency fields of varying frequencies. The machine body is composed of microbeads made from a low-melting-point alloy and NdFeB microparticles. When heated, the alloy liquefies, allowing the rotation of NdFeB microparticles under a 40 mT pulsed programming field. Upon cooling, the new configuration is locked in place. This reprogramming process is equally effective for single or multiple machines, enabling versatile multi-pattern deformation of individual machines and cooperation of multiple ones. Furthermore, by incorporating addressable thermal actuation, we demonstrate in situ assembly of multiple robots. This work may enable a broad spectrum of magnetic soft machines with enhanced functionalities.
Collapse
Affiliation(s)
- Yuxuan Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Boxi Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Xiang Cui
- School of Computer Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yue Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230000, Hefei, Anhui, China
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230000, Hefei, Anhui, China
| | - Shutong Nong
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Zhengqing Zhu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Jiyang Wu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Dongxiao Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Xingxiang Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Shiwu Zhang
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China.
| | - Xiangyang Li
- School of Computer Science and Technology, University of Science and Technology of China, 230026, Hefei, China.
| | - Mujun Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
2
|
Erin O, Chen X, Bell A, Raval S, Schwehr T, Liu X, Addepalli P, Mair LO, Weinberg IN, Diaz-Mercado Y, Krieger A. Strong magnetic actuation system with enhanced field articulation through stacks of individually addressed coils. Sci Rep 2024; 14:23123. [PMID: 39367078 PMCID: PMC11452550 DOI: 10.1038/s41598-024-72615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Miniaturization of medical tools promises to revolutionize surgery by reducing tissue trauma and accelerating recovery. Magnetic untethered devices, with their ability to access hard-to-reach areas without physical connections, emerge as potential candidates for such miniaturization. Despite the benefits, these miniature devices face challenges regarding force and torque outputs, restricting their ability to perform tasks requiring mechanical interactions such as tissue penetration and manipulation. To overcome magnetic actuation system-based force and torque limitations, this study proposes Variable Outer Radius Individually Addressable Coil Stacks (VORIACS), a novel magnetic actuation system optimized for high force output generation to magnetic devices within its workspace. The VORIACS marks significant improvements and breakthroughs in magnetic actuation within decimeter-scale workspace. The VORIACS is comprised of 12 coils that are optimized for 2D magnetic field generation under maximized power consumption of up to 12 kW. We implement six two-channel motor controllers, powered by six separate power supplies. Each of the twelve coils in the system is operated on its own motor-controller channel. This arrangement allows the system to exceed the magnetic forces and torques possible for single-coil versions of the same geometry. This study elaborates on optimizing, manufacturing, integrating, and demonstrating this system. Comparative analysis reveals that while a suboptimal, single-coil version of this system generates 0.31 N force (710 mT/m magnetic gradient magnitude), the VORIACS produces 1.673 N force (3834 mT/m magnetic gradient magnitude) on the same magnetic object placed 5 cm away from the coils. Moreover, the strong penetration force generated by VORIACS enables needle penetration to a mock gel that has the rigidity of liver tissue. In addition, we demonstrate the advantage of stacked coils with variable radii for magnetic field manipulability while maintaining the optimized force delivery property of the system, which improves control and could facilitate multi-tool manipulation. By enabling a fivefold increase in magnetic pulling force compared to its single-coil counterpart, VORICAS raises the potential penetration capabilities of untethered magnetic robotics in surgical procedures.
Collapse
Affiliation(s)
- Onder Erin
- Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Baltimore, MD, 21218, USA.
| | - Xinhao Chen
- Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Baltimore, MD, 21218, USA
| | - Adrian Bell
- Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Baltimore, MD, 21218, USA
| | - Suraj Raval
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Trevor Schwehr
- Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Baltimore, MD, 21218, USA
| | - Xiaolong Liu
- Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Baltimore, MD, 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79407, USA
| | - Pranav Addepalli
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lamar O Mair
- Weinberg Medical Physics, Inc., North Bethesda, MD, 20852, USA
| | | | - Yancy Diaz-Mercado
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Axel Krieger
- Johns Hopkins University, Laboratory for Computational Sensing and Robotics, Baltimore, MD, 21218, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
3
|
Remlova E, Feig VR, Kang Z, Patel A, Ballinger I, Ginzburg A, Kuosmanen J, Fabian N, Ishida K, Jenkins J, Hayward A, Traverso G. Activated Metals to Generate Heat for Biomedical Applications. ACS MATERIALS LETTERS 2023; 5:2508-2517. [PMID: 37680546 PMCID: PMC10481395 DOI: 10.1021/acsmaterialslett.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Delivering heat in vivo could enhance a wide range of biomedical therapeutic and diagnostic technologies, including long-term drug delivery devices and cancer treatments. To date, providing thermal energy is highly power-intensive, rendering it oftentimes inaccessible outside of clinical settings. We developed an in vivo heating method based on the exothermic reaction between liquid-metal-activated aluminum and water. After establishing a method for consistent activation, we characterized the heat generation capabilities with thermal imaging and heat flux measurements. We then demonstrated one application of this reaction: to thermally actuate a gastric resident device made from a shape-memory alloy called Nitinol. Finally, we highlight the advantages and future directions for leveraging this novel in situ heat generation method beyond the showcased example.
Collapse
Affiliation(s)
- Eva Remlova
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Health Sciences and Technology, Eidgenössische
Technische Hochschule Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Vivian Rachel Feig
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ziliang Kang
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ashka Patel
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ian Ballinger
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Ginzburg
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Cell/Cellular and Molecular Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Johannes Kuosmanen
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Niora Fabian
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Keiko Ishida
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joshua Jenkins
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison Hayward
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Giovanni Traverso
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Tang Y, Li M, Wang T, Dong X, Hu W, Sitti M. Wireless Miniature Magnetic Phase-Change Soft Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204185. [PMID: 35975467 PMCID: PMC7613683 DOI: 10.1002/adma.202204185] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Indexed: 05/28/2023]
Abstract
Wireless miniature soft actuators are promising for various potential high-impact applications in medical, robotic grippers, and artificial muscles. However, these miniature soft actuators are currently constrained by a small output force and low work capacity. To address such challenges, a miniature magnetic phase-change soft composite actuator is reported. This soft actuator exhibits an expanding deformation and enables up to a 70 N output force and 175.2 J g-1 work capacity under remote magnetic radio frequency heating, which are 106 -107 times that of traditional magnetic soft actuators. To demonstrate its capabilities, a wireless soft robotic device is first designed that can withstand 0.24 m s-1 fluid flows in an artery phantom. By integrating it with a thermally-responsive shape-memory polymer and bistable metamaterial sleeve, a wireless reversible bistable stent is designed toward future potential angioplasty applications. Moreover, it can additionally locomote inside and jump out of granular media. At last, the phase-change actuator can realize programmable bending deformations when a specifically designed magnetization profile is encoded, enhancing its shape-programming capability. Such a miniature soft actuator provides an approach to enhance the mechanical output and versatility of magnetic soft robots and devices, extending their medical and other potential applications.
Collapse
Affiliation(s)
- Yichao Tang
- School of Mechanical Engineering Tongji University Shanghai 201804, China; Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569, Stuttgart, Germany
| | - Mingtong Li
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569, Stuttgart, Germany; Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou, Jiangsu 215123, China
| | - Tianlu Wang
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569, Stuttgart, Germany; Institute for Biomedical Engineering ETH Zurich Zurich 8092, Switzerland
| | - Xiaoguang Dong
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569, Stuttgart, Germany; of Mechanical Engineering Vanderbilt University Nashville, TN 37215, USA; Vanderbilt Institute for Surgery and Engineering Vanderbilt University Nashville, TN 37215, USA
| | - Wenqi Hu
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569, Stuttgart, Germany; Institute for Biomedical Engineering ETH Zurich Zurich 8092, Switzerland; School of Medicine and College of Engineering Koç University Istanbul 34450, Turkey
| |
Collapse
|
5
|
Li AL, Lee S, Shahsa H, Duduta M. Real time high voltage capacitance for rapid evaluation of dielectric elastomer actuators. SOFT MATTER 2022; 18:7123-7130. [PMID: 36082902 DOI: 10.1039/d2sm00690a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dielectric elastomer actuators (DEAs) are soft electromechanical transducers that have enabled robotic, haptic, and optical applications. Despite their advantages in high specific energy, large bandwidth, and simple fabrication, their widespread adoption is limited by poor long-term performance. While the mechanical work output has been studied extensively, the electrical energy input has rarely been characterized. Here we report a method to continuously monitor high voltage capacitance during DEA actuation to directly measure the electrical energy consumption. Our approach can track energy conversion efficiency, but also show changes in the device's properties in real-time. This unprecedented insight enables a novel way to study DEAs, evaluate degradation mechanisms, and correlate material structure to device performance. Moreover, it provides a data acquisition platform for data-driven optimization and prediction of long-term actuator performance. This work is a necessary step towards developing ultra-resilient DEAs and enabling a wide range of applications, from wearable devices to soft machines across different scales.
Collapse
Affiliation(s)
- Ang Leo Li
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Siyoung Lee
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Haleh Shahsa
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Mihai Duduta
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|
6
|
Deployable Tubular Mechanisms Integrated with Magnetic Anchoring and Guidance System. ACTUATORS 2022. [DOI: 10.3390/act11050124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deployable mechanism has received more attention in the medical field due to its simple structure, dexterity, and flexibility. Meanwhile, the advantages of the Magnetic Anchoring and Guidance System (MAGS) are further highlighted by the fact that the operators can remotely control the corresponding active and passive magnetic parts in vivo. Additionally, MAGS allows the untethered manipulation of intracorporeal devices. However, the conventional instruments in MAGS are normally rigid, compact, and less flexible. Therefore, to solve this problem, four novel deployable tubular mechanisms, Design 1 (Omega-shape mechanism), Design 2 (Fulcrum-shape mechanism), Design 3 (Archway-shape mechanism), and Design 4 (Scissor-shape mechanism) in this paper, are proposed integrated with MAGS to realize the laser steering capability. Firstly, this paper introduces the motion mechanism of the four designs and analyzes the motion characterization of each structure through simulation studies. Further, the prototypes of four designs are fabricated using tubular structures with embedded magnets. The actuation success rate, the workspace characterization, the force generation and the load capability of four mechanisms are tested and analyzed based on experiments. Then, the demonstration of direct laser steering via macro setup shows that the four mechanisms can realize the laser steering capability within the error of 0.6 cm. Finally, the feasibility of indirect laser steering via a macro-mini setup is proven. Therefore, such exploration demonstrates that the application of the deployable tubular mechanisms integrated with MAGS towards in vivo treatment is promising.
Collapse
|
7
|
Xia N, Jin B, Jin D, Yang Z, Pan C, Wang Q, Ji F, Iacovacci V, Majidi C, Ding Y, Zhang L. Decoupling and Reprogramming the Wiggling Motion of Midge Larvae Using a Soft Robotic Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109126. [PMID: 35196405 DOI: 10.1002/adma.202109126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The efficient motility of invertebrates helps them survive under evolutionary pressures. Reconstructing the locomotion of invertebrates and decoupling the influence of individual basic motion are crucial for understanding their underlying mechanisms, which, however, generally remain a challenge due to the complexity of locomotion gaits. Herein, a magnetic soft robot to reproduce midge larva's key natural swimming gaits is developed, and the coupling effect between body curling and rotation on motility is investigated. Through the authors' systematically decoupling studies using programmed magnetic field inputs, the soft robot (named LarvaBot) experiences various coupled gaits, including biomimetic side-to-side flexures, and unveils that the optimal rotation amplitude and the synchronization of curling and rotation greatly enhance its motility. The LarvaBot achieves fast locomotion and upstream capability at the moderate Reynolds number regime. The soft robotics-based platform provides new insight to decouple complex biological locomotion, and design programmed swimming gaits for the fast locomotion of soft-bodied swimmers.
Collapse
Affiliation(s)
- Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Bowen Jin
- Beijing Computational Science Research Center, Haidian District, Beijing, 100193, China
| | - Dongdong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chengfeng Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Veronica Iacovacci
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 56025, Italy
| | - Carmel Majidi
- Soft Machines Lab, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Yang Ding
- Beijing Computational Science Research Center, Haidian District, Beijing, 100193, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
8
|
Mohanty S, Fidder RJ, Matos PM, Heunis CM, Kaya M, Blanken N, Misra S. SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:988-997. [PMID: 34990355 DOI: 10.1109/tuffc.2022.3140745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power, and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a six-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTweezer can reach pressure magnitudes of 300 kPa at a low supply voltage of 25 V to the transducers, which is in the same order of absolute pressure as multi-transducer arrays. Subsequently, we exploit the compactness of our array as an end-effector tool for a robotic manipulator to demonstrate long-range actuation of sub-millimeter agents over a hundred times the agent's body length. Furthermore, a phase-modulation over its individual transducers allows our array to locally maneuver its target agents at sub-mm steps. The ability to manipulate agents underwater makes SonoTweezer suitable for clinical applications considering water's similarity to biological media, e.g., vitreous humor and blood plasma. Finally, we show trapping and manipulation of micro-agents under medical ultrasound (US) imaging modality. This application of our actuation strategy combines the usage of US waves for both imaging and micromanipulation.
Collapse
|
9
|
Zhang J. Evolving from Laboratory Toys towards Life-Savers: Small-Scale Magnetic Robotic Systems with Medical Imaging Modalities. MICROMACHINES 2021; 12:1310. [PMID: 34832722 PMCID: PMC8620623 DOI: 10.3390/mi12111310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022]
Abstract
Small-scale magnetic robots are remotely actuated and controlled by an externally applied magnetic field. These robots have a characteristic size ranging from several millimetres down to a few nanometres. They are often untethered in order to access constrained and hard-to-reach space buried deep in human body. Thus, they promise to bring revolutionary improvement to minimally invasive diagnostics and therapeutics. However, existing research is still mostly limited to scenarios in over-simplified laboratory environment with unrealistic working conditions. Further advancement of this field demands researchers to consider complex unstructured biological workspace. In order to deliver its promised potentials, next-generation small-scale magnetic robotic systems need to address the constraints and meet the demands of real-world clinical tasks. In particular, integrating medical imaging modalities into the robotic systems is a critical step in their evolution from laboratory toys towards potential life-savers. This review discusses the recent efforts made in this direction to push small-scale magnetic robots towards genuine biomedical applications. This review examines the accomplishment achieved so far and sheds light on the open challenges. It is hoped that this review can offer a perspective on how next-generation robotic systems can not only effectively integrate medical imaging methods, but also take full advantage of the imaging equipments to enable additional functionalities.
Collapse
Affiliation(s)
- Jiachen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Tous C, Li N, Dimov IP, Kadoury S, Tang A, Häfeli UO, Nosrati Z, Saatchi K, Moran G, Couch MJ, Martel S, Lessard S, Soulez G. Navigation of Microrobots by MRI: Impact of Gravitational, Friction and Thrust Forces on Steering Success. Ann Biomed Eng 2021; 49:3724-3736. [PMID: 34622313 DOI: 10.1007/s10439-021-02865-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Magnetic resonance navigation (MRN) uses MRI gradients to steer magnetic drug-eluting beads (MDEBs) across vascular bifurcations. We aim to experimentally verify our theoretical forces balance model (gravitational, thrust, friction, buoyant and gradient steering forces) to improve the MRN targeted success rate. METHOD A single-bifurcation phantom (3 mm inner diameter) made of poly-vinyl alcohol was connected to a cardiac pump at 0.8 mL/s, 60 beats/minutes with a glycerol solution to reproduce the viscosity of blood. MDEB aggregates (25 ± 6 particles, 200 [Formula: see text]) were released into the main branch through a 5F catheter. The phantom was tilted horizontally from - 10° to +25° to evaluate the MRN performance. RESULTS The gravitational force was equivalent to 71.85 mT/m in a 3T MRI. The gradient duration and amplitude had a power relationship (amplitude=78.717 [Formula: see text]). It was possible, in 15° elevated vascular branches, to steer 87% of injected aggregates if two MRI gradients are simultaneously activated ([Formula: see text] = +26.5 mT/m, [Formula: see text]= +18 mT/m for 57% duty cycle), the flow velocity was minimized to 8 cm/s and a residual pulsatile flow to minimize the force of friction. CONCLUSION Our experimental model can determine the maximum elevation angle MRN can perform in a single-bifurcation phantom simulating in vivo conditions.
Collapse
Affiliation(s)
- Cyril Tous
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Ning Li
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Ivan P Dimov
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Samuel Kadoury
- Polytechnique Montréal, 2500 Chemin de Polytechnique, 28, Montreal, QC, H3T 1J4, Canada
| | - An Tang
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Urs O Häfeli
- University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zeynab Nosrati
- University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Katayoun Saatchi
- University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | - Sylvain Martel
- Polytechnique Montréal, 2500 Chemin de Polytechnique, 28, Montreal, QC, H3T 1J4, Canada
| | - Simon Lessard
- Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada.,École de Technologie Supérieur, 1100 Rue Notre-Dame O, Montreal, QC, H3C 1K3, Canada
| | - Gilles Soulez
- Centre de recherche du Centre hospitalier de l, Université de Montréal (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada. .,Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
11
|
Erin O, Alici C, Sitti M. Design, Actuation, and Control of an MRI-Powered Untethered Robot for Wireless Capsule Endoscopy. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3089147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|