1
|
Kong L, Yu C, Chen Y, Zhu Z, Jiang L. Rational MOF Membrane Design for Gas Detection in Complex Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407021. [PMID: 39444085 DOI: 10.1002/smll.202407021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Metal-organic frameworks (MOFs) hold significant promise in the realm of gas sensing. However, current understanding of their sensing mechanisms remains limited. Furthermore, the large-scale fabrication of MOFs is hampered by their inadequate mechanical properties. These two challenges contribute to the sluggish development of MOF-based gas-sensing materials. In this review, the selection of metal ions and organic ligands for designing MOFs is first presented, deepening the understanding of the interactions between different metal ions/organic ligands and target gases. Subsequently, the typical interfacial synthesis strategies (gas-solid, gas-liquid, solid-liquid interfaces) are provided, highlighting the potential for constructing MOF membranes on superhydrophobic and/or superhydrophilic substrates. Then, a multi-scale structure design strategies is proposed, including multi-dimensional membrane design and heterogeneous membrane design, to improve sensing performance through enhanced interfacial mass transfer and specific gas sieving. This strategy is anticipated to augment the task-specific capabilities of MOF-based materials in complex environments. Finally, several key future research directions are outlined with the aim not only to further investigate the underlying sensing principles of MOF membranes but also to achieve efficient detection of target gases amidst interfering gases and elevated moisture levels.
Collapse
Affiliation(s)
- Lei Kong
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Chengyue Yu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongpeng Zhu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
2
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
3
|
Li M, Guo Q, Wen J, Zhan F, Shi M, Zhou N, Huang C, Wang L, Mao H. Oriented bouncing of droplets with a small Weber number on inclined one-dimensional nanoforests. NANOSCALE 2024; 16:5343-5351. [PMID: 38375552 DOI: 10.1039/d3nr05449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Asymmetric superhydrophobic structures with anisotropic wettability can achieve directional bouncing of droplets and thus can have applications in directional self-cleaning, liquid transportation, and heat transfer. To achieve convenient large-scale preparation of asymmetric superhydrophobic surfaces, inclined nanoforests are prepared in this work using a technique of competitive ablation polymerization, which allows the control of the inclined angles, diameters, and heights of the nanostructures. In this study, such asymmetric structures with the smallest dimension (230 nm diameter) known are achieved by a simple etching method to guide droplet unidirectional bouncing. With such nanoforests, the mechanism of droplet bouncing on their surface is investigated, and controllable droplet bouncing over a long distance is achieved using droplets with a low Weber number. The proposed structure has a promising future in directional self-cleaning, liquid transportation and heat transfer.
Collapse
Affiliation(s)
- Mao Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiming Guo
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Meng Shi
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Zhou
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Yu S, Wang M, Xie Y, Qian W, Bai Y, Feng Q. Lignin self-assembly and auto-adhesion for hydrophobic cellulose/lignin composite film fabrication. Int J Biol Macromol 2023; 233:123598. [PMID: 36773872 DOI: 10.1016/j.ijbiomac.2023.123598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Large amounts of lignin are produced as a by-product of paper pulping, resulting in a tremendous waste of natural resources with potential uses across various areas. To achieve the value-added utilization of agricultural waste and lignin, we developed a method for the fabrication of a lignin structure-designed hydrophobic film (LSHF) directly through solvent/anti-solvent self-assembly (acetic acid aqueous solution/n-hexane) and auto-adhesion of acetic acid lignin (AL) on the surface of a lignocellulose film (LCF). As the morphology structure revealed, the LSHF had a rough surface composed of lignin colloidal spheres, which significantly improved the water contact angle (WCA) from ~80° to ~130°. Furthermore, benefiting from the auto-adhesion of lignin, the WCA was more stable in 240 s, demonstrating that the LSHF had a lower WCA decrease (15.53 % - 25.55 % decrease) than the LCF (41.97 % - 61.11 % decrease) and the sample without auto-adhesion (100 % decrease). Simultaneously, auto-adhesion endowed the LSHF with a ~50 % increase in tensile strength. This work provides a novel strategy for the fabrication of hydrophobic cellulose/lignin composite films via lignin self-assembly and auto-adhesion.
Collapse
Affiliation(s)
- Shixu Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Miaolin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Yimin Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Weicheng Qian
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Yuwen Bai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Qinghua Feng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
5
|
Zhao W, Wang Y, Han M, Xu J, Tam KC. Surface Modification, Topographic Design and Applications of Superhydrophobic Systems. Chemistry 2022; 28:e202202657. [PMID: 36315127 DOI: 10.1002/chem.202202657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/27/2022]
Abstract
Superhydrophobic surfaces with expanded wetting behaviors, like tunable adhesion, hybrid surface hydrophobicity and smart hydrophobic switching have attracted increasing attention due to their broad applications. Herein, the construction methods, mechanisms and advanced applications of special superhydrophobicity are reviewed, and hydro/superhydrophobic modifications are categorized and discussed based on their surface chemistry, and topographic design. The formation and maintenance of special superhydrophobicity in the metastable state are also examined and explored. In addition, particular attention is paid to the use of special wettability in various applications, such as membrane distillation, droplet-based electricity generators and anti-fogging surfaces. Finally, the challenges for practical applications and future research directions are discussed.
Collapse
Affiliation(s)
- Weinan Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yi Wang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Mei Han
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jiaxin Xu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
6
|
Zhao Z, Ge Y, Xu L, Sun X, Zuo J, Wang Z, Liu H, Jiang X, Wang D. Bio-inspired polymer array vapor sensor with dual signals of fluorescence intensity and wavelength shift. Front Bioeng Biotechnol 2022; 10:1058404. [DOI: 10.3389/fbioe.2022.1058404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Organic vapor sensors based on polymer owing to their tunable molecular structures and designable functions have attracted considerable research interest. However, detecting multiple organic vapors with high accuracy and a low detection limit is still challenging. Herein, inspired by the mammalian olfactory recognition system, organic vapor sensors based on one-dimensional microfilament array structures with a wide range of sensing gases are demonstrated. By introducing aggregation-induced emission (AIE) molecules, sensors possess dual-optical sensing mechanisms of variation in fluorescence intensity and wavelength. By virtue of the synergistic effects of dual signals, superb accuracy and incredibly low detection limit are achieved for identifying analytes. In particular, the polymer/AIE microfilament array can detect acetone vapor down to 0.03% of saturated vapor pressure. In the saturated vapor of acetone, the fluorescence intensity of the sensor arrays was reduced by 53.7%, while the fluorescence wavelength was red-shifted by 21 nm. Combined with the principal component analysis (PCA) algorithm, the polymer/AIE molecular sensor arrays accomplished the classification and identification of acetone, ethanol, methylene chloride, toluene, and benzene. This bioinspired approach with dual sensing signals may broaden practical applications to high-performance gas sensors for precise molecular detection.
Collapse
|
7
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
8
|
Abstract
Bio-inspired surfaces enabling wet adhesion management are of significant interest for applications in the field of biomedicine, as components of bionic robots and as wearable devices. In the course of biological evolution, many organisms have evolved wet adhesive surfaces with strong attachment ability. Insects enhance their adhesion on contact substrates using secreted adhesive liquids. Here we discuss concepts of bio-inspired wet adhesion. First, remaining challenges associated with the understanding and the design of biological and artificial wet adhesive systems as well as strategies to supply adhesive liquids to their contact surfaces are reviewed. Then, future directions to construct wet adhesive surfaces with liquids are discussed in detail. Finally, a model of wet adhesion management with liquids is suggested, which might help the design of next-generation bio-inspired wet adhesive surfaces.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Martin Steinhart
- Institut für Chemie neuer Materialien and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
9
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|