1
|
Jia Y, Kong L, Zhang T, Wang Y, Liu A, Gao L, Ma T. Portable water collection bag based on solar-driven interfacial evaporation. ENVIRONMENTAL TECHNOLOGY 2025:1-8. [PMID: 39956142 DOI: 10.1080/09593330.2025.2462795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025]
Abstract
Convenient and portable, sustained provision of safe drinking water is crucial for wilderness survival. In this study, a portable water collection bag utilising solar-driven interface evaporation technology has been developed. The water collection bag includes a plastic film, CB-PS microsphere evaporator, and a small vial. By placing on the water surface, the CB-PS microspheres float and absorb sunlight to quickly evaporate the surrounding water. The plastic film and vial make it easy and fast to collect clean and safe drinking water. The device boasts an impressive evaporation rate of 1.64 kg·m⁻²·h⁻¹ under 1 sun illumination. Moreover, the portable water collection bag can withstand harsh acidic and alkaline conditions, efficiently removing organic contaminants from wilderness water sources to meet drinking water standards. Importantly, it is designed for repeated use without any water evaporation rate decreasing. The portable water collection bag also exhibits strong resistance to salt, making it suitable for applications in desalinating seawater into freshwater.
Collapse
Affiliation(s)
- Ye Jia
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Dalian University of Technology, Dalian, People's Republic of China
| | - Lingxue Kong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Dalian University of Technology, Dalian, People's Republic of China
| | - Tengdi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Dalian University of Technology, Dalian, People's Republic of China
| | - Yuping Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Dalian University of Technology, Dalian, People's Republic of China
| | - Anmin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Dalian University of Technology, Dalian, People's Republic of China
| | - Liguo Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Dalian University of Technology, Dalian, People's Republic of China
| | - Tingli Ma
- College of Materials and Chemistry, China Jiliang University, Hangzhou, People's Republic of China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
2
|
Zeng L, Deng D, Soad EH, Fang X, Bai Y. Bioinspired Pyramidal Array Photothermal Structure for Highly Efficient Water Evaporation under Omnidirectional Illumination. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4913-4924. [PMID: 39772405 DOI: 10.1021/acsami.4c18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Solar-driven interfacial evaporation is regarded as a green and sustainable strategy to address the global freshwater crisis. Nevertheless, it remains challenging to develop a photothermal structure with highly efficient evaporation under omnidirectional illumination. Herein, a three-dimensional multiscale pyramidal array photothermal structure (PAPS) was developed from the inspiration of durian skin. It consisted of macroscale three-dimensional pyramidal array structures to enhance light absorption and increase the evaporation area, microscale porous structures to ensure continuous water transport and facilitate vapor diffusion, and nanoscale protrusion structures with hybrid photothermal materials of CuxO/C to enhance light trapping and photothermal conversion efficiency. It was fabricated in a porous foam matrix by a facile milling process. The PAPS induced an evaporation rate of 2.08 kg/m2h under one sun illumination under direct light conditions, which was 24% higher than that of a planar photothermal structure. The PAPS maintained fairly good evaporation performance under inclined light conditions, i.e., the evaporation rate of the PAPS was 1.72 kg/m2h at 45° inclined light angle. It only decreased by 17% compared to the direct sunlight conditions, which was much smaller than the 29% decrease of the planar photothermal structure. Additionally, the PAPS present a large evaporation rate of 6.29 kg/m2h under one sun illumination in air convection conditions with a wind speed of 3 m/s. This work provided a high-performance pyramidal array photothermal structure for highly efficient water evaporation under omnidirectional illumination, which provides potential opportunities for stable solar desalination and freshwater supply in complex and variable environments.
Collapse
Affiliation(s)
- Long Zeng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Daxiang Deng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - El Hiak Soad
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xinqi Fang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yuchao Bai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
3
|
Li L, Chen K, Zhang J, Zhang J. Design of MOF-Based Solar Evaporators With Hierarchical Microporous/Nanobridged/Nanogranular Structures for Rapid Interfacial Solar Evaporation and Fresh Water Collection. CHEMSUSCHEM 2024; 17:e202401224. [PMID: 38997230 DOI: 10.1002/cssc.202401224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Interfacial solar evaporation (ISE) holds considerable promise to solve fresh water shortage, but it is challenging to achieve high evaporation rate (Reva) and fresh water yield in close system. Here, we report design and preparation of MOF-based solar evaporators with hierarchical microporous/nanobridged/nanogranular structures for rapid ISE and fresh water collection in close system. The evaporators are fabricated by growing silicone nanofilaments with variable length as nanobridges on a microporous silicone sponge followed by grafting with polydopamine nanoparticles and Cu-MOF nanocrystals. Integration of the unique structure and excellent photothermal composites endows the evaporators with high Reva of 3.5-20 wt % brines (3.60-2.90 kg m-2 h-1 in open system and 2.38-1.44 kg m-2 h-1 in close system) under simulated 1 sun, high Reva under natural sunlight, excellent salt resistance and high fresh water yield, which surpass most state-of-the-art evaporators. Moreover, when combined with a superhydrophilic cover, the evaporators show much higher average Reva of real seawater, remarkable fresh water yield and excellent long-term stability over one month continuous ISE under natural sunlight. The findings here will promote the development of advanced evaporators via microstructure engineering and their real-world ISE applications.
Collapse
Affiliation(s)
- Lingxiao Li
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Chen
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jiaren Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Nishimura M, Miyashita H, Lin HI, Zhang L, Jeem M, Watanabe S. One-Pot Fabrication of Copper-Doped WO 3·H 2O Opto-Functional Layered Device using Submerged Photosynthesis of Crystallites. ACS OMEGA 2024; 9:44714-44723. [PMID: 39524637 PMCID: PMC11541436 DOI: 10.1021/acsomega.4c07571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
This study introduces a one-pot, submerged photosynthesis of crystallites (SPsC) method for fabricating monohydrate tungstic acid (WO3·H2O) nanoplates directly integrated onto a stainless steel mesh, offering a simplified production and enhanced device stability for optical functional applications. The fabricated devices demonstrate exceptional broadband light absorption across the ultraviolet (UV), visible (Vis), and near-infrared (NIR) ranges. Notably, 1% Cu doping significantly boosts the NIR absorption, yielding a high solar utilization efficiency of 81.40%. In solar water evaporation experiments, the devices exhibit a maximum temperature increase of 13 °C under 1-Sun (100 mW/cm2) illumination, achieving an energy conversion efficiency of 32.5%. Moreover, electrochemical characterization reveals light-induced conductivity changes and enhanced current density, suggesting potential applications in rectifying devices. This versatile and environmentally conscious SPsC fabrication method holds promise for the sustainable development of diverse nanodevices.
Collapse
Affiliation(s)
- Mahiro Nishimura
- Graduate
School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hiroto Miyashita
- Graduate
School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hsueh-I Lin
- Graduate
School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Lihua Zhang
- Faculty
of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Melbert Jeem
- Faculty
of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Seiichi Watanabe
- Faculty
of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
5
|
Zhou S, Yang D, Xiang W, Guo Y, Yu Z, Wang J. An in-depth study of integrating cascaded photocatalytic H 2O 2 generation and activation with solar-driven interfacial evaporation for in-situ organic contaminant remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134963. [PMID: 38908186 DOI: 10.1016/j.jhazmat.2024.134963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Integrating cascaded photocatalytic H2O2 generation and subsequent activation of H2O2 (into ·OH radicals) with solar-driven interfacial evaporation techniques offers an effective and sustainable approach for in-situ treating water contaminated with organic substances. Unlike traditional water-dispersed catalysts, the interfacial evaporation approach presents unique challenges in photocatalytic reactions. We explored these dynamics using an AgI/PPy/MF interfacial photothermal set, achieving H2O2 production efficiency (approximately 1.53 mM/g/h) - three times higher than submerged counterparts. This efficiency is attributed to exceptional solar light absorption (about 95 %), a significant surface photothermal effect (raising temperatures by approximately 36 °C), and enhanced oxygen availability (38 times more than in water), all characteristic of the interfacial system. The in-situ activation of H2O2 into ·OH notably improves the degradation of organic pollutants, achieving up to 99 % removal efficiency. This comprehensive analysis highlights the potential of combining photocatalytic H2O2 processes with interfacial evaporation for efficiently purifying organically polluted water.
Collapse
Affiliation(s)
- Shuai Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dailin Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyu Xiang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Guo
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziwei Yu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juan Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Kim HT, Philip L, McDonagh A, Johir M, Ren J, Shon HK, Tijing LD. Recent Advances in High-Rate Solar-Driven Interfacial Evaporation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401322. [PMID: 38704683 PMCID: PMC11234448 DOI: 10.1002/advs.202401322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Recent advances in solar-driven interfacial evaporation (SDIE) have led to high evaporation rates that open promising avenues for practical utilization in freshwater production and industrial application for pollutant and nutrient concentration, and resource recovery. Breakthroughs in overcoming the theoretical limitation of 2D interfacial evaporation have allowed for developing systems with high evaporation rates. This study presents a comprehensive review of various evaporator designs that have achieved pure evaporation rates beyond 4 kg m-2 h-1, including structural and material designs allowing for rapid evaporation, passive 3D designs, and systems coupled with alternative energy sources of wind and joule heating. The operational mechanisms for each design are outlined together with discussion on the current benefits and areas for improvement. The overarching challenges encountered by SDIE concerning the feasibility of direct integration into contemporary practical settings are assessed, and issues relating to sustaining elevated evaporation rates under diverse environmental conditions are addressed.
Collapse
Affiliation(s)
- Hyeon Tae Kim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Ligy Philip
- Environmental Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Andrew McDonagh
- School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Md Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Jiawei Ren
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
7
|
Guo T, Wan Z, Panahi-Sarmad M, Banvillet G, Lu Y, Zargar S, Tian J, Jiang F, Mao Y, Tu Q, Rojas OJ. Chitin Nanofibers Enable the Colloidal Dispersion of Carbon Nanomaterials in Aqueous Phase and Hybrid Material Coassembly. ACS NANO 2024; 18:14954-14967. [PMID: 38820368 DOI: 10.1021/acsnano.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Chitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system. Related effects are found to be transferable to multiwalled carbon nanotubes and graphene nanosheets. The observations explain the functionality of hybrid membranes obtained by aqueous phase processing, which benefit from an excellent areal mass distribution (correlated to piezoresistivity), also contributing to high electromechanical performance. The water resistance and flexibility of the ChNF/CNT membranes (along with its tensile strength at break of 190 MPa, conductivity of up to 426 S/cm, and piezoresistivity and light absorption properties) are conveniently combined in a device demonstration, a sunlight water evaporator. The latter is shown to present a high evaporation rate (as high as 1.425 kg water m-2 h-1 under one sun illumination) and recyclability.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gabriel Banvillet
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shiva Zargar
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Jing Tian
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Qingshi Tu
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
8
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
9
|
Yu N, Hu H, Xia W, Zhao Z, Cheng H. Iron diselenide/carbon black loaded mushroom-shaped evaporator for efficiently continuous solar-driven desalination. J Colloid Interface Sci 2024; 658:238-246. [PMID: 38104406 DOI: 10.1016/j.jcis.2023.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Solar-driven desalination is an environmentally sustainable method to alleviate the problems of freshwater scarcity and the energy crisis. However, how to improve the synergy between the photothermal material and the evaporator to achieve high photothermal conversion efficiency simultaneously, excellent thermal management system and good salt resistance remains a challenge. Here, a mushroom-shaped solar evaporation device is designed and fabricated with iron diselenide/carbon black (FeSe2/CB) coated cellulose acetate (CA) film as mushroom surface and cotton swab as mushroom handle, which presented high solar-driven evaporation and excellent salt resistance. Thanks to the unique photothermal effect and the synergistic effect, the FeSe2/CB composites enabled a promising photothermal conversion efficiency of up to 65.8 °C after 180 s. The mushroom-shaped evaporation device effectively overcomes water transport and steam spillage channel blockage caused by salt crystallization through its unique vertical transport water channels and conical air-water interface. When exposed to real sunlight, the solar evaporation rate of the steam generation structure reached as high as 2.03 kg m-2 h-1, which is more than 13 times higher than natural evaporation. This study offered new insights into the higher solar-driven evaporation rate and salt-blocking resistance of the FeSe2/CB mushroom-shaped solar evaporation device for solar-powered water production.
Collapse
Affiliation(s)
- Ningning Yu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Hao Hu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Wanting Xia
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhipeng Zhao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haoyan Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
10
|
Liu H, He M, Gu J, Liu Y, Yang L, Li A, Yu J, Wang L, Qin X. Making Nanofiber Membrane Stand on End to Construct Vertically Interfacial Evaporators for Efficient Solar Evaporation, Omnidirectional Solar Absorption, and Ultrahigh-Salinity Brine Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307005. [PMID: 37940625 DOI: 10.1002/smll.202307005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Solar-driven interfacial desalination is widely considered to be a promising technology to address the global water crisis. This study proposes a novel electrospun nanofiber-based all-in-one vertically interfacial solar evaporator endowed with a high steam generation rate, steady omnidirectional evaporation, and enduring ultrahigh-salinity brine desalination. In particular, the electrospun nanofiber is collected into the tubular structure, followed by spraying with a dense crosslinked poly(vinyl alcohol) film, which renders them sufficiently strong for the preparation of a vertically array evaporator. The integrated evaporator made an individual capillary as a unit to form multiple thermal localization interfaces and steam dissipation channels, realizing zone heating of water. Thus a high steam generation rate exceeding 4.0 kg m-2 h-1 in pure water is demonstrated even under omnidirectional sunlight, and outperforms existing evaporators. Moreover, salt ions in the photothermal layer can be effectively transported to the water in capillaries and subsequently exchanged with the bulk water due to the strong action of capillary force, which ensures an ultrahigh desalination rate (≈12.5 kg m-2 h-1 under 3 sun) in 25 wt% concentration brine over 300 min. As such, this work provides a meaningful roadmap for the development of state-of-the-art solar-driven interfacial desalination.
Collapse
Affiliation(s)
- Huijie Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mantang He
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jiatai Gu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Ye Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lei Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ailin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology of Donghua University, Shanghai, 201620, China
| | - Liming Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Wu X, Lu Y, Ren X, Wu P, Chu D, Yang X, Xu H. Interfacial Solar Evaporation: From Fundamental Research to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313090. [PMID: 38385793 DOI: 10.1002/adma.202313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Indexed: 02/23/2024]
Abstract
In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Yi Lu
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohu Ren
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaofei Yang
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
12
|
Rathore LK, Garg P, Kumar P, Bera A. Super-hydrophilic LaCoO 3/g-C 3N 4 nanocomposite coated beauty sponge for solar-driven seawater desalination with simultaneous volatile organic compound removal. NANOSCALE 2024; 16:2599-2607. [PMID: 38224332 DOI: 10.1039/d3nr04951e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Interfacial solar steam generation (ISSG) is emerging as a promising, environment-friendly solution for fulfilling freshwater and energy demands. However, a critical challenge for ISSG lies in the presence of harmful volatile organic compounds (VOCs) in the feedwater which are co-evaporated with water, leading to more enriched concentration in condensed water. Herein, lanthanum cobaltate-graphitic carbon nitride (LaCoO3/g-C3N4, LCO/g-CN) nanocomposite decorated beauty sponge (LCO/g-CN@BS) is proposed as an efficient photothermal/photocatalytic material for solar-driven seawater desalination and simultaneous VOC degradation. The hydrophobic surface of the beauty sponge after LCO/g-CN coating becomes super-hydrophilic, ensuring sufficient water supply and our LCO/g-CN@BS delivers an evaporation rate of 1.94 kg m-2 h-1 under 1 sun irradiation. This LCO/g-CN@BS shows excellent seawater desalination capacity with a self-cleaning ability when employed for saltwater purification for a salt (NaCl) concentration as high as 15 wt%. Moreover, fast photocarrier transfer between LCO and g-CN leads to enhanced photocatalytic degradation of over 90% of phenol simultaneously, which is about 60% for only an LCO-based beauty sponge. This work presents a promising approach to combining novel nanocomposites with microporous structures for efficient solar desalination, offering simultaneous VOC degradation.
Collapse
Affiliation(s)
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu, J&K 181221, India.
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology Jammu, J&K 181221, India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu, J&K 181221, India.
| |
Collapse
|
13
|
Chaw Pattnayak B, Krishna VS, Sahu BK, Mohapatra S. Reusable Floating Spherical Hydrogel Evaporator for Solar Desalination with Salt Mitigation and Contaminant Elimination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18663-18671. [PMID: 38063076 DOI: 10.1021/acs.langmuir.3c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The generation of clean and drinkable fresh water from seawater and contaminated water holds great potential to mitigate water scarcity. Herein, a floating spherical hydrogel evaporator (SHE) is designed to achieve sunlight-driven desalination, self-salt cleaning, and removal of environmental contaminants. The spherical lightweight polystyrene is coated with a porous carbon-embedded sodium alginate/PVA/CMC photothermal hydrogel to generate a spherical hydrogel evaporator (SHE) that floats naturally. The SHE is very sensitive to the weight imbalance (500 mg) and can respond quickly to the accumulation of salt by rotation to the fresh evaporation surface, realizing excellent antisalt fouling performance. Remarkably, with energy localization by porous carbon, the spherical floating evaporator achieved a high evaporation rate of 2.65 kg m-2 h-1 with an evaporation efficiency of 98%. At the same time, SHE is also capable of adsorbing both organic contaminants and heavy metal ions through functional groups of the hydrogel, attaining 99% removal efficiency. Overall, this low-cost spherical floating evaporator may offer solution for eco-friendly and sustainable production of fresh water on a large scale.
Collapse
Affiliation(s)
- Bibek Chaw Pattnayak
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - V Saimohana Krishna
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Bikash K Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
- Centre for Nanomaterials, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
14
|
Song W, Wang H, Zhang Z, Cao Y, Zhang M, Zhang P, Zhang Y, Liu Z, Shen Y, Huang W. A scalable and anti-fouling silver-nickel/cellulose paper with synergy photothermal effect for efficient solar distillation. J Colloid Interface Sci 2023; 650:1044-1051. [PMID: 37459728 DOI: 10.1016/j.jcis.2023.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 08/17/2023]
Abstract
Solar interfacial evaporation is one of the most efficient and environmentally-friendly clean freshwater production technologies. Plasma metal nanoparticles are excellent optical absorption materials, but their high cost and inherent resonance narrow bandwidth absorption limit their application. In this work, commercial cellulose papers are used as substrates to synthesize Ag-Ni/cellulose paper by the seed-mediated method. The Ag-Ni/cellulose paper exhibits high light absorption at the full wavelength (200-2500 nm) resulting from the synergistic effect of localized surface plasmon resonance (LSPR) of Ag NPs and the interband transitions (IBTs) of Ni. Under one-sun irradiation (1 kW m-2), the energy utilization efficiency of Ag-Ni/cellulose paper is as high as 93.8%, and the water evaporation rate is 1.87 kg m-2 h-1. Diffusion inhibition experiment results show that the Ag-Ni/cellulose paper exhibits excellent antibacterial performance, and the antibacterial performance is highly related with Ag NPs content. These provide new opportunities for commercial production of competitive cost, green, and portable solar evaporators for different application sceneries.
Collapse
Affiliation(s)
- Wenjie Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China
| | - Huihui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China
| | - Ziqi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China; Qiongtai Normal University, Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Haikou, Hainan 571127, PR China
| | - Mingxin Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China
| | - Ping Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China
| | - Yongming Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China
| | - Zhongxin Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China.
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China.
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
15
|
Li J, Ding L, Su Z, Li K, Fang F, Sun R, Qin Y, Chang K. Non-Lignin Constructing the Gas-Solid Interface for Enhancing the Photothermal Catalytic Water Vapor Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305535. [PMID: 37607503 DOI: 10.1002/adma.202305535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Indexed: 08/24/2023]
Abstract
The progress of solar-driven water-splitting technology has been impeded by the limited light response capability of semiconductor materials. Despite attempts to leverage nearly 50% of infrared radiation for photothermal synergy and catalytic reaction enhancement, heat loss during liquid phase reactions results in low energy conversion efficiency. Here, the photothermally driven catalytic water-splitting system, which designs K-SrTiO3 -loaded TiN silica wool at the water-air interface. Photocatalytic tests and density functional theory calculations demonstrate that the thermal effect transforms liquid water into water vapor, thereby reducing the reaction free energy of catalysts and improving the transmission rate of catalytic products. Hence, the hydrogen evolution rate reaches 275.46 mmol m-2 h-1 , and the solar-to-hydrogen (STH) efficiency is 1.81% under 1 sun irradiation in this gas-solid system, which is more than twice that of liquid water splitting. This novel photothermal catalytic pathway, which involves a coupled reaction of water evaporation and water splitting, is anticipated to broaden the utilization range of the solar spectrum and significantly enhance the conversion efficiency of STH.
Collapse
Affiliation(s)
- Jinghan Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Lingling Ding
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Zhiyuan Su
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Kun Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Fan Fang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ruixue Sun
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yalei Qin
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Kun Chang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
16
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Zhao M, Hu C, Liu J, Han MY, Pan RJ, Yu ZZ, Li X. Three-Dimensional Spiral Evaporator with Side Channels for Efficient Solar-Driven Water Purification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48196-48206. [PMID: 37801710 DOI: 10.1021/acsami.3c10235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Solar evaporators have the advantages of not consuming fossil fuels, being environmentally friendly, and nonpolluting, offering a promising sustainable method to obtain fresh water and alleviate the worldwide freshwater shortage crisis. In this work, we report that high-performance solar evaporators can be facilely fabricated by processing a cost-effective polypyrrole (PPy)-coated nonwoven fabric (PCNF) into a three-dimensional (3D) spiral structure and introducing side channels for vapor escape. The coated PPy layer ensures excellent photothermal properties and the chemical stability of the evaporator. Meanwhile, the as-created spiral structure of the evaporator can significantly increase the effective evaporation area and harvest energy from the environment, greatly stimulating the evaporation. The side opening channels can effectively facilitate the escape of vapor generated inside the 3D spiral structure, avoid the internal vapor accumulation, and ultimately promote the evaporation of the inner surface, leading to a boost of the evaporation performance. Combining these features, the resulting evaporator exhibits an ultrahigh evaporation rate of 3.26 kg m-2 h-1 and an energy efficiency of 138% under 1-sun irradiation. More importantly, we show that this evaporator can also be used to collect fresh water from soil and sand, demonstrating its great applicability for obtaining potable water in arid areas.
Collapse
Affiliation(s)
- Mang Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chen Hu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Meng-Yan Han
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Rui-Jie Pan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
18
|
Qiu H, Qu X, Zhang Y, Chen S, Shen Y. Robust PANI@MXene/GQDs-Based Fiber Fabric Electrodes via Microfluidic Wet-Fusing Spinning Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302326. [PMID: 37354134 DOI: 10.1002/adma.202302326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Two-dimensional transition metal titanium carbide (Ti3 C2 Tx ) as a promising candidate material for batteries and supercapacitors has shown excellent electrochemical performance, but it is difficult to meet practical applications because of its poor morphology structure, low mechanical properties, and expensive process. Here, an applied and efficient method based on microfluidic wet-fusing spinning chemistry (MWSC) is proposed to construct hierarchical structure of MXene-based fiber fabrics (MFFs), allowing the availability of MFF electrodes with ultrastrong toughness, high conductivity, and easily machinable properties. First, a dot-sheet structure constructed by graphene quantum dots (GQDs) and MXene nanosheets with multianchor interaction in the microchannel of a microfluidic device enhances the mechanical strength of MXene fibers; next, the interfused fiber network structure of Ti3 C2 Tx /GQDs fabrics assembled by the MWSC process enhances the deformability of the whole fabrics; finally, the core-shell structure of PANI@Ti3 C2 Tx /GQDs architected by in-situ polymerization growth of polyaniline (PANI) nanofibers provides more ion-accessible pathways and sites for kinetic migration and ion accumulation. Through the morphology and microstructure design, this strategy has directive significance to the large-scale preparation of conductive fabric electrodes and provides a viable solution for simultaneously enhancing mechanical strength and electrochemical performance of conductive fabric electrodes.
Collapse
Affiliation(s)
- Hui Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Xiaowei Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yujiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
19
|
Wang Y, Shang Y, Sun X, Yang Q, Zhang Y. Enhancing Freshwater Production via Customizable and Highly Efficient Solar-Driven Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40595-40605. [PMID: 37583295 DOI: 10.1021/acsami.3c08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Solar-powered water generation is an appealing strategy for cost-effective and energy-sustainable seawater purification/desalination, where rational material selection and device design is crucial. Nevertheless, prevailing carbon-based photothermal materials in such systems still suffer from mediocre steam-to-water efficiency, failing to satisfy an adequate freshwater supply. Herein, we demonstrate a biomimetic corrugated evaporator (CE) affording carbon nanotube (CNT) encapsulated Fe nanocluster-decoration in the pursuit of high-efficiency seawater purification. The thus-customized CE demonstrates a maximum evaporation rate of 4.2 kg m-2 h-1 with a refraction angle of 60° and a water-lifting height of 5.5 cm, outperforming most state-of-the-art carbon-based counterparts. By employing a tailored architectural design and optimized condensing volume, the steam-to-water efficiency increases from 65.8 to 88.2% as the volume enlarges from 0.8 to 5.3 L, further harvesting a peak value of 91% under negative pressure. Light intensity simulation and experimental mechanistic investigation disclose the dual property-performance relationships between evaporator microstructure and evaporation rate, as well as between condensing device volume and steam-to-water efficiency. The universality of the theoretical guidance of this work will offer insight into the development of solar-driven evaporator construction toward simultaneous seawater desalination and clean water generation.
Collapse
Affiliation(s)
- Yifei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yaxin Shang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xuedi Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qing Yang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Li N, Shao K, He J, Wang S, Li S, Wu X, Li J, Guo C, Yu L, Murto P, Chen J, Xu X. Solar-Powered Interfacial Evaporation and Deicing Based on a 3D-Printed Multiscale Hierarchical Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301474. [PMID: 37086141 DOI: 10.1002/smll.202301474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m-2 h-1 in calm air and 25.3 kg m-2 h-1 at a gentle breeze of 2 m s-1 are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.
Collapse
Affiliation(s)
- Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Ke Shao
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Jintao He
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shuai Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaochun Wu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Cui Guo
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
21
|
Yan J, Wu Q, Wang J, Xiao W, Zhang G, Xue H, Gao J. Carbon nanofiber reinforced carbon aerogels for steam generation: Synergy of solar driven interface evaporation and side wall induced natural evaporation. J Colloid Interface Sci 2023; 641:1033-1042. [PMID: 36996682 DOI: 10.1016/j.jcis.2023.03.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Solar-based interface evaporation (SIE) is a green, efficient and cost-effective technique to harvest fresh water. 3D solar evaporators show their unique advantages in gaining energy from environment and hence possess a higher evaporation rate than 2D evaporators. However, much effort is still required to develop mechanically robust and superhydrophilic 3D evaporators with strong water transportation capability and salt-rejection performance, and at the same time reveal how they gain energy from environment via the natural evaporation. In this work, a novel carbon nanofiber reinforced carbon aerogel (CNFA) is prepared for the SIE. The CNFA has a high light absorption up to 97.2% and outstanding photothermal conversion performance. The heteroatom doping and hierarchically porous structure endow the CNFA with superhydrophilicity and thus powerful water transportation capability and salt rejection performance. Benefiting from synergy of the SIE and side wall induced natural evaporation, the CNFA evaporator exhibits a high evaporation rate and efficiency (as high as 3.82 kg m-2h-1 and 95.5%, respectively) with long-term stability and durability. The CNFA can also work normally in high-salinity and corrosive seawater. This study demonstrates a new method to fabricate all-carbon aerogel solar evaporators and provides insights for the effective thermal management during the interface evaporation.
Collapse
|
22
|
Wu J, Qu J, Yin G, Zhang T, Zhao HY, Jiao FZ, Liu J, Li X, Yu ZZ. Omnidirectionally irradiated three-dimensional molybdenum disulfide decorated hydrothermal pinecone evaporator for solar-thermal evaporation and photocatalytic degradation of wastewaters. J Colloid Interface Sci 2023; 637:477-488. [PMID: 36716671 DOI: 10.1016/j.jcis.2023.01.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Although most solar steam generation devices are effective in desalinating seawater and purifying wastewaters with heavy metal ions, they are ineffective in degrading organic pollutants from wastewaters. Herein, we design novel solar-driven water purification devices by decoration of three-dimensional pinecones with MoS2 nanoflowers via a one-step hydrothermal synthesis for generating clean water. The vertically arrayed channels in the central rachis and the unique helically arranged scales of the hydrothermal pinecone can not only transfer bulk water upward to the evaporation surface, but also absorb more solar light from different incident angles for solar-thermal evaporation and photodegradation of wastewaters under omnidirectional irradiations. The decorated MoS2 nanoflowers can not only enhance the solar-thermal energy conversion efficiency, but also decompose organic pollutants in the bulk water by their photocatalytic degradation effects. The resultant hydrothermal pinecone with in situ decorated MoS2 (HPM) evaporator exhibits a high evaporation rate of 1.85 kg m-2 h-1 under 1-sun irradiation with a high energy efficiency of 96 %. During the solar-driven water purification processes, the powdery HPM can also photodegrade organic pollutants of methylene blue and rhodamine B with high removal efficiencies of 96 % and 95 %, respectively. For practical demonstration, by floating in the methylene blue solution under 1-sun irradiation, the bulky HPM can generate clean water by simultaneous solar-thermal evaporation and photocatalytic degradation. The integration of solar steam generation and photocatalytic degradation mechanisms makes the HPM evaporator highly promising for practical high-yield purification of wastewaters.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guang Yin
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Yu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fan-Zhen Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, D2 Dublin, Ireland
| | - Xiaofeng Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
23
|
Xia M, Hu S, Luo W, Guo Y, Zhao P, Li J, Li G, Yan L, Huang W, Li M, Xiao J, Shen Y, Chen Q, Wang D. Hierarchical structure design of sea urchin Shell-Based evaporator for efficient omnidirectional Solar-Driven steam generation. J Colloid Interface Sci 2023; 643:247-255. [PMID: 37060700 DOI: 10.1016/j.jcis.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Solar-driven steam generation (SSG) is regarded as a feasible solution to the problem of fresh water scarcity. Although several attempts have been devoted to increase the efficiency of solar-to-steam conversion, it remains difficult to fabricate cost-effective, steady, and multi-angle sunlight-absorbing evaporators from readily available biomass materials. Herein, a novel hierarchical structured SSG evaporator (PDA@Shell-NaClO) is developed through a simple, low-cost, and scalable etching treatment on discarded sea urchin (SU) shells. Attributing to the dedicatedly designed microneedles array structure and porous skeleton structure of the SU shell, this PDA@Shell-NaClO evaporator shows an outstanding average light absorption performance (>90%) in a broad range of angles from 0° to 60° and exceedingly high evaporation rate of 2.81 kg m-2 h-1 under one sun condition. Furthermore, the prepared evaporator also maintains an overall stable evaporation performance and exhibits an excellent durability for a long time of up to two weeks in actual seawater. This full-ocean biomass-based SSG evaporator with plentiful raw material availability offers innovative opportunities for large-scale fresh water production.
Collapse
Affiliation(s)
- Meng Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Shuyang Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Wenqi Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Yang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Peng Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jiakai Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Guiqiu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Lulu Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Juanxiu Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China.
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China.
| | - Dong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, P. R. China.
| |
Collapse
|
24
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Jiang H, Zhu F, Zhou R, Wang L, Xiao Y, Zhong M. Promoted Photothermal Catalytic CO Hydrogenation by Using TiC-Supported Co-Fe 5 C 2 Catalysts. Chemistry 2023; 29:e202202891. [PMID: 36408994 DOI: 10.1002/chem.202202891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Photothermal catalytic CO hydrogenation offers the potential to synthesize light hydrocarbons by using solar energy. However, the selectivity and activity of the reaction are still far below those achieved in conventional thermal catalytic processes. Herein, we report that the Co-modified Fe5 C2 on TiC catalyst promotes photothermal catalytic CO hydrogenation with a 59 % C2+ selectivity in the produced hydrocarbons and a 30 % single-pass CO conversion at a high gas hourly space-time velocity of 12 000 mL g-1 h-1 . Using in-situ-irradiated XPS, we show that light-induced hot electron injection from TiC to Fe5 C2 modulates the chemical state of Fe, thereby increasing the CO-to-C2+ conversion. This work suggests that it is possible for plasmon-mediated surface chemistry to enhance the activity and selectivity of photothermal catalytic reactions.
Collapse
Affiliation(s)
- Haoyang Jiang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, P. R. China
| | - Feng Zhu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, P. R. China
| | - Renjie Zhou
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, P. R. China
| | - Linyu Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, P. R. China
| | - Yongcheng Xiao
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, P. R. China
| | - Miao Zhong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, P. R. China
| |
Collapse
|
26
|
Synergistic Enhanced Solar-Driven Water Purification and CO2 Reduction via Photothermal Catalytic Membrane Distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Wang Z, Yang Z, Kadirova ZC, Guo M, Fang R, He J, Yan Y, Ran J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Li J, Li N, Wu X, Wang S, Li S, Guo C, Yu L, Wang Z, Murto P, Xu X. Photothermal Aerogel Beads Based on Polysaccharides: Controlled Fabrication and Hybrid Applications in Solar-Powered Interfacial Evaporation, Water Remediation, and Soil Enrichment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50266-50279. [PMID: 36305787 DOI: 10.1021/acsami.2c16634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solar-powered interfacial evaporation has emerged as an innovative and sustainable technology for clean water production. However, the rapid, mass and shape-controlled fabrication of three-dimensional (3D) steam generators (SGs) for versatile hybrid applications remains challenging. Herein, composite aerogel beads with self-contained properties (i.e., hydrophilic, porous, photothermal, and durable) are developed and demonstrated for threefold hybrid applications including efficient solar-powered interfacial evaporation, water remediation, and controlled soil enrichment. The rational incorporation of selected polysaccharides enables us to fabricate bead-like aerogels with rapid gelation, continuous processing, and enhanced ion adsorption. The composite beads can attain a high water evaporation rate of 1.62 kg m-2 h-1 under 1 sun. Meanwhile, high phosphate adsorption capacity of over 120 mg g-1 is achieved in broad pH (2.5-12.4) and concentration (200-1000 mg L-1) ranges of phosphate solutions. Gratifyingly, we demonstrate the first example of recycling biomaterials from interfacial SGs for controlled nutrient release, soil enrichment, and sustainable agriculture. The phosphate-saturated beads can be gradually broken down in the soil. Macronutrients (N, P, and K) can be slowly released in 50 days, sustaining the plant germination and growth in a whole growth stage. This work shines light on the mass and controlled fabrication of aerogel beads based on double-network biopolymers, not merely scaling up solar-powered interfacial evaporation but also considering water remediation, waste material disposal, and value-added conversion.
Collapse
Affiliation(s)
- Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaochun Wu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Cui Guo
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhihang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
29
|
Xie A, Zhu L, Liang Y, Mao J, Liu Y, Chen S. Fiber‐spinning Asymmetric Assembly for Janus‐structured Bifunctional Nanofiber Films towards All‐Weather Smart Textile. Angew Chem Int Ed Engl 2022; 61:e202208592. [DOI: 10.1002/anie.202208592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- An‐Quan Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Jian Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Yijiang Liu
- College of Chemistry Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Xiangtan University Xiangtan 411105 Hunan Province P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
30
|
Fiber‐spinning Asymmetric Assembly for Janus‐structured Bifunctional Nanofiber Films towards All‐Weather Smart Textile. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Meng F, Zhang Y, Zhang S, Ju B, Tang B. Rational Design of Biomass-Derived Composite Aerogels for Solar-Driven Seawater Desalination and Sewage Treatment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fantao Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yuang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
32
|
Zhang C, Chen X, Cui B, Chen L, Zhu J, Bai N, Wang W, Zhao D, Li Z, Wang Z. Dual-Layer Multichannel Hydrogel Evaporator with High Salt Resistance and a Hemispherical Structure toward Water Desalination and Purification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26303-26313. [PMID: 35615808 DOI: 10.1021/acsami.2c06370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial solar steam generation technology has been considered as one of the most promising methods for seawater desalination. However, in practical applications, salt precipitation on the evaporation surface reduces the evaporation rate and impairs long-term stability. Herein, a dual-layer hydrogel-based evaporator that contains a microchannel-structured water-supplying layer and a nanoporous light-absorbing layer was synthesized via sol-gel transition and "hot-ice" template methods. Contributed by the designed structure-induced accelerated salt ion exchange, the hemispherical dual-layer hydrogel evaporator showed excellent salt formation resistance property, as well as a high evaporation rate reaching 2.03 kg m-2 h-1 even under high brine concentration conditions. Furthermore, the hydrogel-based evaporator also demonstrated excellent ion rejection, high/low pH tolerance, and excellent purification properties toward heavy metals and organic dyes. It is believed that this type of dual-layer multichannel evaporator is promising to be used in seawater desalination, water pollution treatment, and other environmental remediation-related applications.
Collapse
Affiliation(s)
- Caiyan Zhang
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xuelong Chen
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Baozheng Cui
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lina Chen
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jingbo Zhu
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ningjing Bai
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Wei Wang
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Dongyu Zhao
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zewen Li
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhe Wang
- Department of Macromolecular Materials and Engineering, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
33
|
Pan X, Sarhan RM, Kochovski Z, Chen G, Taubert A, Mei S, Lu Y. Template synthesis of dual-functional porous MoS 2 nanoparticles with photothermal conversion and catalytic properties. NANOSCALE 2022; 14:6888-6901. [PMID: 35446331 DOI: 10.1039/d2nr01040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Radwan M Sarhan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
34
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
35
|
Peng B, Lyu Q, Gao Y, Li M, Xie G, Xie Z, Zhang H, Ren J, Zhu J, Zhang L, Wang P. Composite Polyelectrolyte Photothermal Hydrogel with Anti-biofouling and Antibacterial Properties for the Real-World Application of Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16546-16557. [PMID: 35362947 DOI: 10.1021/acsami.2c02464] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar steam generation provides a promising and low-cost solution for freshwater production in energy scarcity areas. However, in real-world applications, evaporators are easily affected by microorganism contamination in source water, causing surface corrosion, structural damage, or even invalidation. Developing anti-biofouling and antibacterial evaporators is significant for long-term stable freshwater production. Herein, a composite polyelectrolyte photothermal hydrogel consisting of sulfobetaine methacrylate (SBMA), [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC), and polypyrrole (PPy) with anti-biofouling and antibacterial properties is developed. Crediting sufficient ammonium groups and zwitterionic segments, the optimized polyelectrolyte hydrogel exhibits an ∼90% antibacterial ratio against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and effectively controls biological contamination. Under 1.0 kW m-2 solar irradiation, a rapid water evaporation rate of ∼1.690 kg m-2 h-1 and a high solar-to-evaporation efficiency of ∼95.94% are achieved with the photothermal hydrogel. We show that a lab-made setup integrated with the hydrogel can realize ∼0.455 kg m-2 h-1 freshwater production from seawater under natural sunlight. Moreover, the hydrogel exhibits excellent durability with a stable evaporation rate of ∼1.617 kg m-2 h-1 in real seawater for over 6 weeks, making it fullhearted in the real-world application of solar steam generation.
Collapse
Affiliation(s)
- Bolun Peng
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Miaomiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ge Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhanjun Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hanchao Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingli Ren
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Peng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|