1
|
Liu GW, Pickett MJ, Kuosmanen JLP, Ishida K, Madani WAM, White GN, Jenkins J, Park S, Feig VR, Jimenez M, Karavasili C, Lal NB, Murphy M, Lopes A, Morimoto J, Fitzgerald N, Cheah JH, Soule CK, Fabian N, Hayward A, Langer R, Traverso G. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics. NATURE MATERIALS 2024; 23:1292-1299. [PMID: 38413810 PMCID: PMC11364503 DOI: 10.1038/s41563-024-01811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Pills are a cornerstone of medicine but can be challenging to swallow. While liquid formulations are easier to ingest, they lack the capacity to localize therapeutics with excipients nor act as controlled release devices. Here we describe drug formulations based on liquid in situ-forming tough (LIFT) hydrogels that bridge the advantages of solid and liquid dosage forms. LIFT hydrogels form directly in the stomach through sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by a drug-containing polymer solution of alginate and four-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels robustly form in the stomachs of live rats and pigs, and are mechanically tough, biocompatible and safely cleared after 24 h. LIFT hydrogels deliver a total drug dose comparable to unencapsulated drug in a controlled manner, and protect encapsulated therapeutic enzymes and bacteria from gastric acid-mediated deactivation. Overall, LIFT hydrogels may expand access to advanced therapeutics for patients with difficulty swallowing.
Collapse
Affiliation(s)
- Gary W Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew J Pickett
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keiko Ishida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Fractyl Health, Inc., Lexington, MA, USA
| | - Wiam A M Madani
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Weill Cornell Medical College, New York City, NY, USA
| | - Georgia N White
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Sanghyun Park
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivian R Feig
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Stanford University, Stanford, CA, USA
| | - Miguel Jimenez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Boston University, Boston, MA, USA
| | - Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikhil B Lal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MIT Media Lab, Cambridge, MA, USA
| | - Matt Murphy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Lopes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Morimoto
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nina Fitzgerald
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tufts University, Medford, MA, USA
| | - Jaime H Cheah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian K Soule
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Niora Fabian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Inda-Webb ME, Jimenez M, Liu Q, Phan NV, Ahn J, Steiger C, Wentworth A, Riaz A, Zirtiloglu T, Wong K, Ishida K, Fabian N, Jenkins J, Kuosmanen J, Madani W, McNally R, Lai Y, Hayward A, Mimee M, Nadeau P, Chandrakasan AP, Traverso G, Yazicigil RT, Lu TK. Sub-1.4 cm 3 capsule for detecting labile inflammatory biomarkers in situ. Nature 2023; 620:386-392. [PMID: 37495692 DOI: 10.1038/s41586-023-06369-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Transient molecules in the gastrointestinal tract such as nitric oxide and hydrogen sulfide are key signals and mediators of inflammation. Owing to their highly reactive nature and extremely short lifetime in the body, these molecules are difficult to detect. Here we develop a miniaturized device that integrates genetically engineered probiotic biosensors with a custom-designed photodetector and readout chip to track these molecules in the gastrointestinal tract. Leveraging the molecular specificity of living sensors1, we genetically encoded bacteria to respond to inflammation-associated molecules by producing luminescence. Low-power electronic readout circuits2 integrated into the device convert the light emitted by the encapsulated bacteria to a wireless signal. We demonstrate in vivo biosensor monitoring in the gastrointestinal tract of small and large animal models and the integration of all components into a sub-1.4 cm3 form factor that is compatible with ingestion and capable of supporting wireless communication. With this device, diseases such as inflammatory bowel disease could be diagnosed earlier than is currently possible, and disease progression could be more accurately tracked. The wireless detection of short-lived, disease-associated molecules with our device could also support timely communication between patients and caregivers, as well as remote personalized care.
Collapse
Affiliation(s)
- M E Inda-Webb
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Jimenez
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Q Liu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - N V Phan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Ahn
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Steiger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Wentworth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Riaz
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - T Zirtiloglu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - K Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - K Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Fabian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - J Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Madani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R McNally
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A Hayward
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - M Mimee
- Department of Microbiology, Biological Sciences Division and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | | | - A P Chandrakasan
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - G Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - R T Yazicigil
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA.
| | - T K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Senti Biosciences, South San Francisco, CA, USA.
| |
Collapse
|
3
|
Huang HW, de Gruijl D, Fritz P, Kemkar A, Ballinger I, Selsing G, Chai PR, Traverso G. Encapsulation of Gas Sensors to Operate in the Gastrointestinal Tract for Continuous Monitoring. PROCEEDINGS OF IEEE SENSORS. IEEE INTERNATIONAL CONFERENCE ON SENSORS 2022; 2022:10.1109/sensors52175.2022.9967279. [PMID: 36570066 PMCID: PMC9783471 DOI: 10.1109/sensors52175.2022.9967279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in ingestible sensors have enabled in situ detection of gastrointestinal (GI) biomarkers which shows great potential in shifting the paradigm of diagnosing GI and systemic diseases. However, the humid, acidic gastric environment is extremely harsh to electrically powered sensors, which limits their capacity for long term, continuous monitoring. Here, we propose an encapsulation approach for a gas sensor integrated into a nasogastric (NG) tube that overcomes chemical corrosion, electrical short, and mechanical collision in a gastric environment to enable continuous gaseous biomarkers monitoring. The coating effects on the sensitivity, signal latency, and repeatability are investigated. Our long-term continuous monitoring in vitro results show that the proposed coating method enables the gas sensors to function reliably and consistently in the simulated GI environment for more than 1 week. The encapsulation is composed of Polycaprolactone (PCL) to protect against mechanical scratching and Parylene C to prevent a sensor from chemical corrosion and electrical short. The average life-time of the sensor with 10 micrometers Parylene coating is about 3.6 days. Increasing the coating thickness to 20 micrometers results in 10.0 days. In terms of repeatability, 10 micrometers and 20 micrometers Parylene C coated sensors have a standard deviation of 1.30% and 2.10% for its within sensor response, and 5.19% and 3.06% between sensors respectively.
Collapse
Affiliation(s)
- Hen-Wei Huang
- Dept. of Medicine., Harvard Medical School, Boston, United States
| | - David de Gruijl
- Dept. of Medicine., Harvard Medical School, Boston, United States
| | - Philip Fritz
- Dept. of Medicine., Harvard Medical School, Boston, United States
| | - Abhijay Kemkar
- Dept. of Medicine., Harvard Medical School, Boston, United States
| | - Ian Ballinger
- Dept. of Medicine., Harvard Medical School, Boston, United States
| | - George Selsing
- Dept. of Mechanical Engineering., Massachusetts Institute of Technology, Cambridge, United States
| | - Peter Ray Chai
- Dept. of Emergency Medicine., Harvard Medical School, Boston, United States
| | - Giovanni Traverso
- Dept. of Medicine., Harvard Medical School, Boston, United States,Dept. of Mechanical Engineering., Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|