1
|
Liang S, Liu S, Miao J, Li Y, Zhao S, Xue Z, Zhou Y, Qi K, Shao W, He J, Xu Z. Dynamic Induction of Conversion-Based Anode Degradation by Valence State and Mechanical Cracks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502795. [PMID: 40285581 DOI: 10.1002/smll.202502795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Electrochemical energy storage through conversion reactions in crystalline electrode materials primarily depends on the size of guest ions. In this study, a combination of synchrotron-based transmission X-ray microscopy and X-ray absorption near edge spectroscopy is utilized to reveal the dynamic physicochemical changes in the micro-regions of spherical NiS2 active particles during the potassiation/depotassiation process. The findings show that, as the degree of potassiation increases, visible cracks and voids form within the bulk material, with significant differences in the chemical valence states of metal elements between the inner and outer regions. Furthermore, the voids induce the formation of new cracks, which propagate extensively into the bulk, serving as the root cause of electrode particle failure. Based on these observations, it is also demonstrated that this failure phenomenon in active materials can be mitigated through dimensional engineering strategies, paving the way for the development of high-capacity and highly stable potassium-ion batteries.
Collapse
Affiliation(s)
- Shuaitong Liang
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Shuoshuo Liu
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Junping Miao
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yuenan Li
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
- Binzhou Institute of Technology, Shandong, 256606, China
| | - Songya Zhao
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Zihan Xue
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yuman Zhou
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Kun Qi
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Weili Shao
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Jianxin He
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Shahmohammadi A, Dalvand S, Molaei A, Mousavi-Khoshdel SM, Yazdanfar N, Hasanzadeh M. Transition metal phosphide/ molybdenum disulfide heterostructures towards advanced electrochemical energy storage: recent progress and challenges. RSC Adv 2025; 15:13397-13430. [PMID: 40297000 PMCID: PMC12035537 DOI: 10.1039/d5ra01184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Transition metal phosphide @ molybdenum disulfide (TMP@MoS2) heterostructures, consisting of TMP as the core main catalytic body and MoS2 as the outer shell, can solve the three major problems in the field of renewable energy storage and catalysis, such as lack of resources, cost factors, and low cycling stability. The heterostructures synergistically combine the excellent conductivity and electrochemical performance of transition metal phosphides with the structural robustness and catalytic activity of molybdenum disulfide, which holds great promise for clean energy. This review addresses the advantages of TMP@MoS2 materials and their synthesis methods-e.g., hydrothermal routes and chemical vapor deposition regarding scalability and cost. Their electrochemical energy storage and catalytic functions e.g., hydrogen and oxygen evolution reactions (HER and OER) are also extensively explored. Their potential within battery and supercapacitor technologies is also assessed against leading performance metrics. Challenges toward industry-scale scalability, longevity, and environmental sustainability are also addressed, as are optimization and large-scale deployment strategies.
Collapse
Affiliation(s)
- Ali Shahmohammadi
- Faculty of Chemistry, Kharazmi University 43 South Mofatteh Avenue Tehran Iran
| | - Samad Dalvand
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Amirhossein Molaei
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology Tabriz Iran
| | | | - Najmeh Yazdanfar
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
3
|
Wang F, Gao J, Li H, Zhang J, Jiang A, Liu Y, Ren F. A Novel N/P-Doped Carbon Shells/Mn 5.64P 3 with Hexagonal Crystal Structure Hybrid as a Prospective Anode for Lithium-Ion Batteries. Molecules 2025; 30:1346. [PMID: 40142120 PMCID: PMC11944552 DOI: 10.3390/molecules30061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/08/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
The tailored crystalline configuration coupled with submicron particles would be conducive to superior ionic conductivity, which could further improve the cycle life of lithium-ion batteries (LIBs). Here, manganese phosphide (Mn5.64P3) particles with hexagonal crystal structure embedded into nitrogen/phosphorus (N/P) co-doped carbon shells (Mn5.64P3-C) are successfully prepared by the self-template and recrystallization-self-assembly method. The electrochemical properties of as-synthesized Mn5.64P3-C as anode materials for LIBs are systematically investigated. The XRD and HRTEM combined with SAED indicate that the prepared Mn5.64P3-C hybrid with the ratio of 1:10 of Mn:C present a hexagonal crystal structure covered with a carbon layer. During charging/discharging at the current density of 0.5 A g-1, the Mn5.64P3-C electrode exhibits the reversible capacity of 160 mAh g-1 after 3000 cycles with high-capacity retention. The ex-situ XRD of initial discharge/charge process at different voltages implies that the Mn5.64P3 could be transformed to the amorphous LixMnyPz. The N/P co-doped carbon shells can provide high specific area for electrolyte infiltration, and act as the buffer matrix to suppress the loss of the Mn5.64P3 active material during cycling. The Mn5.64P3 with the hexagonal crystal structure and N/P co-doped carbon shells could promote the further optimization and development of manganese phosphide for high-performance LIBs.
Collapse
Affiliation(s)
- Fei Wang
- Faculty of Engineering, Huanghe Science & Technology University, Zhengzhou 450006, China; (J.G.); (H.L.); (J.Z.); (A.J.)
| | - Jingxia Gao
- Faculty of Engineering, Huanghe Science & Technology University, Zhengzhou 450006, China; (J.G.); (H.L.); (J.Z.); (A.J.)
| | - Hui Li
- Faculty of Engineering, Huanghe Science & Technology University, Zhengzhou 450006, China; (J.G.); (H.L.); (J.Z.); (A.J.)
| | - Junle Zhang
- Faculty of Engineering, Huanghe Science & Technology University, Zhengzhou 450006, China; (J.G.); (H.L.); (J.Z.); (A.J.)
| | - Aiyun Jiang
- Faculty of Engineering, Huanghe Science & Technology University, Zhengzhou 450006, China; (J.G.); (H.L.); (J.Z.); (A.J.)
| | - Yong Liu
- School of Materials Science and Engineering, Henan University of Science and Technology, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China;
- Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, Luoyang 471023, China
| | - Fengzhang Ren
- School of Materials Science and Engineering, Henan University of Science and Technology, Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China;
| |
Collapse
|
4
|
Jiang W, Wang Z, Li Q, Ren J, Xu Y, Zhao E, Li Y, Li Y, Pan L, Yang J. In Situ Construction of Crumpled Ti 3C 2T x Nanosheets Confined S-Doping Red Phosphorus by Ti-O-P Bonds for LIBs Anode with Enhanced Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52393-52405. [PMID: 39315720 DOI: 10.1021/acsami.4c11060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Red phosphorus (RP) with a high theoretical specific capacity (2596 mA h g-1) and a moderate lithiation potential (∼0.7 V vs Li+/Li) holds promise as an anode material for lithium-ion batteries (LIBs), which still confronts discernible challenges, including low electrical conductivity, substantial volumetric expansion of 300%, and the shuttle effect induced by soluble lithium polyphosphide (LixPPs). Here, S-NRP@Ti3C2Tx composites were in situ prepared through a phosphorus-amine-based method, wherein S-doped red phosphorus nanoparticles (S-NRP) grew and anchored on the crumpled Ti3C2Tx nanosheets via Ti-O-P bonds, constructing a three-dimensional porous structure which provides fast channels for ion and electron transport and effectively buffers the volume expansion of RP. Interestingly, based on the results of adsorption experiments of polyphosphate and DFT calculation, Ti3C2Tx with abundant oxygen functional groups delivers a strong chemical adsorption effect on LixPPs, thus suppressing the shuttle effect and reducing irreversible capacity loss. Furthermore, S-doping improved the conductivity of red phosphorus nanoparticles, facilitating Li-P redox kinetics. Hence, the S-NRP@Ti3C2Tx anode demonstrates outstanding rate performance (1824 and 1090 mA h g-1 at 0.2 and 4.0 A g-1, respectively) and superior cycling performance (1401 mAh g-1 after 500 cycles at 2.0 A g-1).
Collapse
Affiliation(s)
- Wei Jiang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zuchun Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qian Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jian Ren
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yang Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Erlin Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yajun Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yi Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Limei Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jian Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
5
|
Tang J, Yang R, Peng Y, Lin H, He X, Song Y, Wu K, Kang Y, Yang L. Ultra-Thin Hydrogen-Organic-Framework (HOF) Nanosheets for Ultra-Stable Alkali Ions Battery Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307827. [PMID: 37949815 DOI: 10.1002/smll.202307827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/12/2023]
Abstract
Organic frameworks-based batteries with excellent physicochemical stability and long-term high capacity will definitely reduce the cost, carbon emissions, and metal consumption and contamination. Here, an ultra-stable and ultra-thin perylene-dicyandiamide-based hydrogen organic framework (HOF) nanosheet (P-DCD) of ≈3.5 nm in thickness is developed. When applied in the cathode, the P-DCD exhibits exceptional long-term capacity retention for alkali-ion batteries (AIBs). Strikingly, for lithium-ion batteries (LIBs), at current of 2 A g-1, the large reversible capacity of 108 mA h g-1 shows no attenuation within 5 000 cycles. For sodium-ion batteries (SIBs), the related capacity retains 91.7% within 10 000 cycles compared to the initial state, significantly much more stable than conventional organic materials reported previously. Mechanism studies through ex situ and in situ experiments and theoretical density functional theory (DFT) calculations reveal that the impressive long-term performance retention originates from the large electron delocalization, fast ion diffusion, and physicochemical stability within the ultra-thin 2D P-DCD, featuring π-π and hydrogen bonding stacking, nitrogen-rich units, and low impedance. The advantageous features demonstrate that rationally designed stable and effective organic frameworks pave the way to utilizing complete organic materials for developing next-generation low-cost and highly stable energy storage batteries.
Collapse
Affiliation(s)
- Jialong Tang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Ruoxuan Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yuting Peng
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Hong Lin
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xin He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Kaipeng Wu
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Youngsoo Kang
- Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, 58330, Republic of Korea
| | - Long Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
- Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, 58330, Republic of Korea
| |
Collapse
|
6
|
Zhao Y, Feng K, Yu Y. A Review on Covalent Organic Frameworks as Artificial Interface Layers for Li and Zn Metal Anodes in Rechargeable Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308087. [PMID: 38063856 PMCID: PMC10870086 DOI: 10.1002/advs.202308087] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Indexed: 02/17/2024]
Abstract
Li and Zn metals are considered promising negative electrode materials for the next generation of rechargeable metal batteries because of their non-toxicity and high theoretical capacity. However, the uneven deposition of metal ions (Li+ , Zn2+ ) and the uncontrolled growth of dendrites result in poor electrochemical stability, unsatisfactory cycle life, and rapid capacity decay of batteries assembled with Li and Zn electrodes. Owing to the unique internal directional channels and abundant redox active sites of covalent organic frameworks (COFs), they can be used to promote uniform deposition of metal ions during stripping/electroplating through interface modification strategies, thereby inhibiting dendrite growth. COFs provide a new perspective in addressing the challenges faced by the anodes of Li metal batteries and Zn ion batteries. This article discusses the stability and types of COFs, and summarizes some novel COF synthesis methods. Additionally, it reviews the latest progress and optimization methods of using COFs for metal anodes to improve battery performance. Finally, the main challenges faced in these areas are discussed. This review will inspire future research on metal anodes in rechargeable batteries.
Collapse
Affiliation(s)
- Yunyu Zhao
- College of Physics Science and TechnologyKunming UniversityKunmingYunnan650214China
| | - Kaiyong Feng
- College of Physics Science and TechnologyKunming UniversityKunmingYunnan650214China
| | - Yingjian Yu
- College of Physics Science and TechnologyKunming UniversityKunmingYunnan650214China
| |
Collapse
|
7
|
Yang H, He F, Liu F, Sun Z, Shao Y, He L, Zhang Q, Yu Y. Simultaneous Catalytic Acceleration of White Phosphorus Polymerization and Red Phosphorus Potassiation for High-Performance Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306512. [PMID: 37837252 DOI: 10.1002/adma.202306512] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Red phosphorus (P) as an anode material of potassium-ion batteries possesses ultra-high theoretical specific capacity (1154 mAh g-1 ). However, owing to residual white P during the preparation and sluggish kinetics of K-P alloying limit its practical application. Seeking an efficient catalyst to address the above problems is crucial for the secure preparation of red P anode with high performance. Herein, through the analysis of the activation energies in white P polymerization, it is revealed that the highest occupied molecular orbital energy of I2 (-7.40 eV) is in proximity to P4 (-7.25 eV), and the lowest unoccupied molecular orbital energy of I2 molecule (-4.20 eV) is lower than that of other common non-metallic molecules (N2 , S8 , Se8 , F2 , Cl2 , Br2 ). The introduction of I2 can thus promote the breaking of the P─P bond and accelerate the polymerization of white P molecules. Besides, the ab initio molecular dynamics simulations show that I2 can enhance the kinetics of P-K alloying. The as-obtained red P/C composites with I2 deliver excellent cycling stability (358 mAh g-1 after 1200 cycles at 1 A g-1 ). This study establishes catalysis as a promising pathway to tackle the challenges of P anode for alkali metal ion batteries.
Collapse
Affiliation(s)
- Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fuxiang He
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Fanfan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu Shao
- Jiujiang DeFu Technology Co. Ltd Jiujiang, Jiangxi, 332000, China
| | - Lixin He
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Xie W, Zhang Q, Song S, Cheng X, Yang Y, Wang L, Ouyang X, Xie S, Huang J. High S-doped amorphous carbon/carbon quantum dots coupled micro-frame for highly efficient potassium storage. J Colloid Interface Sci 2023; 652:1522-1532. [PMID: 37660609 DOI: 10.1016/j.jcis.2023.08.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/05/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Anode materials with excellent rate capability, capacity, and cycle life have been a challenge in obtaining cost-effective K-ion batteries (KIBs). Based on the concept of waste recycling, we prepared the S-doped (21.5%) amorphous carbon/carbon quantum dots coupled micro-frame (SCMF) by combining chemical exfoliation and S/Se-assisted carbonization. SCMF exhibited the advantages of integrating amorphous carbon and carbon quantum dots (CQDs). The CQDs serve as fast electron channels, while amorphous carbon can accommodate more large-size K-ions and mitigate volume expansion. In KIBs, SCMF maintained a high reversible capacity (414.0 mAh g-1, after 100 cycles at 100 mA g-1), a good rate capability (224.0 mAh g-1, 2000 mA g-1), and excellent capacity retention (208.9 mAh g-1, after 2000 cycles at 1000 mA g-1). The molecular dynamic simulation revealed that CQDs provided fast electron transport channels and that C, O and S atoms had suitable interactions with K, facilitating potassium storage. Moreover, the potassium-ion capacitor (PIC) assembled from SCMF and activated carbon exhibited stable electrochemical performance, proving its potential for application. The research provided valuable insights into the reuse of biomass waste in new secondary batteries.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Qingfeng Zhang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China.
| | - Shuai Song
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Xueli Cheng
- School of Chemistry and Chemical Engineering, Taishan University, Shandong 271000, China.
| | - Ying Yang
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Hunan 411201, China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaoping Ouyang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Shuhong Xie
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China.
| | - Jianyu Huang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| |
Collapse
|
9
|
Liu C, Han M, Chen CL, Yin J, Zhang L, Sun J. Decorating Phosphorus Anode with SnO 2 Nanoparticles To Enhance Polyphosphides Chemisorption for High-Performance Lithium-Ion Batteries. NANO LETTERS 2023; 23:3507-3515. [PMID: 37027828 DOI: 10.1021/acs.nanolett.3c00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phosphorus has been regarded as one of the most promising next-generation lithium-ion battery anode materials, because of its high theoretical specific capacity and safe working potential. However, the shuttle effect and sluggish conversion kinetics hamper its practical application. To overcome these limitations, we decorated SnO2 nanoparticles at the surface of phosphorus using an electrostatic self-assembly method, in which SnO2 can participate in the discharge/charge reaction, and the Li2O formed can chemically adsorb and suppress the shuttle of soluble polyphosphides across the separator. Additionally, the Sn/Li-Sn alloy can enhance the electrical conductivity of the overall electrode. Meanwhile, the similar volume changes and simultaneous lithiation/delithiation process in phosphorus and SnO2/Sn are beneficial for avoiding additional particle damage near two-phase boundaries. Consequently, this hybrid anode exhibits a high reversible capacity of ∼1180.4 mAh g-1 after 120 cycles and superior high-rate performance with ∼78.5% capacity retention from 100 to 1000 mA g-1.
Collapse
Affiliation(s)
- Cheng Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Muyao Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Cheng-Lung Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, People's Republic of China
| | - Jingzhou Yin
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Lili Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
10
|
Han X, Meng X, Chen S, Zhou J, Wang M, Sun L, Jia Y, Peng X, Mai H, Zhu G, Li J, Bielawski CW, Geng J. P-Doping a Porous Carbon Host Promotes the Lithium Storage Performance of Red Phosphorus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11713-11722. [PMID: 36802456 DOI: 10.1021/acsami.2c21043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Red phosphorus (RP) is a promising anode material for use in lithium-ion batteries (LIBs) due to its high theoretical specific capacity (2596 mA h g-1). However, the practical use of RP-based anodes has been challenged by the material's low intrinsic electrical conductivity and poor structural stability during lithiation. Here, we describe a phosphorus-doped porous carbon (P-PC) and disclose how the dopant improves the Li storage performance of RP that was incorporated into the P-PC (designated as RP@P-PC). P-doping porous carbon was achieved using an in situ method wherein the heteroatom was added as the porous carbon was being formed. The phosphorus dopant effectively improves the interfacial properties of the carbon matrix as subsequent RP infusion results in high loadings, small particle sizes, and uniform distribution. In half-cells, an RP@P-PC composite was found to exhibit outstanding performance in terms of the ability to store and utilize Li. The device delivered a high specific capacitance and rate capability (1848 and 1111 mA h g-1 at 0.1 and 10.0 A g-1, respectively) as well as excellent cycling stability (1022 mA h g-1 after 800 cycles at 2.0 A g-1). Exceptional performance metrics were also measured when the RP@P-PC was used as an anode material in full cells that contained lithium iron phosphate as the cathode material. The methodology described can be extended to the preparation of other P-doped carbon materials that are employed in contemporary energy storage applications.
Collapse
Affiliation(s)
- Xinyi Han
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Xiqing District, Tianjin 300387, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Xiaodong Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Xiqing District, Tianjin 300387, China
| | - Shang Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Ji Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Manyun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Longhua Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Yuncan Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Xiaomeng Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Hairong Mai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Guangxu Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Xiqing District, Tianjin 300387, China
| | - Jingyu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Xiqing District, Tianjin 300387, China
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Xiqing District, Tianjin 300387, China
| |
Collapse
|
11
|
Sun H, Chu X, Zhu Y, Wang B, Wang G, Bai J. Heterointerface construction of carbon coated cobalt-iron phosphide space-confined in hollow porous carbon balls to promote internal/external sodium storage kinetics. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|