1
|
Mo X, Pei X, Huang X. Optimization of T-cell-replete haploidentical hematopoietic stem cell transplantation: the Chinese experience. Haematologica 2025; 110:562-575. [PMID: 39568419 PMCID: PMC11873716 DOI: 10.3324/haematol.2024.286194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Haploidentical-related donor (HID) hematopoietic stem cell transplantation (HSCT) has undergone significant advances in recent decades. Granulocyte colony-stimulating factor- and antithymocyte globulin-based protocols and post-transplantation cyclophosphamide-based regimens represent two of the current T-cell-replete protocols in HID HSCT. Recently, the optimization of several critical transplant techniques has further improved hematopoietic reconstitution, decreased the incidence of relapse and graft-versus-host disease after HID HSCT, and extended the application of HID HSCT to older patients and those with non-malignant hematologic disorders. Combining this approach with novel immunotherapy could further improve the efficacy and safety of HID HSCT. This review focuses on recent progress in the optimization of HID HSCT.
Collapse
Affiliation(s)
- Xiaodong Mo
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044
| | - Xuying Pei
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044
| | - Xiaojun Huang
- Peking University People's Hospital and Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing.
| |
Collapse
|
2
|
Jiao Y, Mi S, Li X, Liu Y, Han N, Xu J, Liu Y, Li S, Guo L. MicroRNA-155 targets SOCS1 to inhibit osteoclast differentiation during orthodontic tooth movement. BMC Oral Health 2023; 23:955. [PMID: 38041017 PMCID: PMC10693016 DOI: 10.1186/s12903-023-03443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND MicroRNA-155 (miR-155) is a multifunctional miRNA whose expression is known to be involved in a range of physiological and pathological processes. Its association with several oral diseases has been established. However, the specific role of miR-155 in orthodontic tooth movement remains unclear. In this study, we investigated the impact of miR-155 on osteoclast differentiation and orthodontic tooth movement models, aiming to explore the underlying mechanisms. METHODS In this experiment, we utilized various agents including miR-155 mimic, miR-155 inhibitor, as well as non-specific sequences (NC mimic & NC inhibitor) to treat murine BMMNCs. Subsequently, osteoclast induction (OC) was carried out to examine the changes in the differentiation ability of monocytes under different conditions. To assess these changes, we employed RT-PCR, Western blotting, and TRAP staining techniques. For the orthodontic tooth movement model in mice, the subjects were divided into two groups: the NaCl group (injected with saline solution) and the miR-155 inhibitor group (injected with AntagomiR-155). We observed the impact of orthodontic tooth movement using stereoscopic microscopy, micro-CT, and HE staining. Furthermore, we performed RT-PCR and Western blotting analyses on the tissues surrounding the moving teeth. Additionally, we employed TargetScan to predict potential target genes of miR-155. RESULTS During osteoclast induction of BMMNCs, the expression of miR-155 exhibited an inverse correlation with osteoclast-related markers. Overexpression of miR-155 led to a decrease in osteoclast-related indexes, whereas underexpression of miR-155 increased those indexes. In the mouse orthodontic tooth movement model, the rate of tooth movement was enhanced following injection of the miR-155 inhibitor, leading to heightened osteoclast activity. TargetScan analysis identified SOCS1 as a target gene of miR-155. CONCLUSIONS Our results suggest that miR-155 functions as an inhibitor of osteoclast differentiation, and it appears to regulate osteoclasts during orthodontic tooth movement. The regulatory mechanism of miR-155 in this process involves the targeting of SOCS1.
Collapse
Affiliation(s)
- Yao Jiao
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
| | - Sicong Mi
- Department of Stomatology, Air Force Medical Center, PLA, The Fourth Military Medical University, Beijing, 100142, P. R. China
| | - Xiaoyan Li
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Yitong Liu
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Nannan Han
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Junji Xu
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Yi Liu
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China.
| | - Lijia Guo
- Department of Orthodontics (WangFuJing Campus), School of Stomatology, Capital Medical University, Scylla alley No.11, Beijing, 100006, P. R. China.
| |
Collapse
|
3
|
Lv M, Shen M, Mo X. Development of allogeneic hematopoietic stem cell transplantation in 2022: Regenerating "Groot" to heal the world. INNOVATION (CAMBRIDGE (MASS.)) 2023; 4:100373. [PMID: 36794169 PMCID: PMC9923186 DOI: 10.1016/j.xinn.2023.100373] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Affiliation(s)
- Meng Lv
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing 100044, China
| | - Mengzhu Shen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing 100044, China
| | - Xiaodong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing 100044, China,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing 100044, China,Corresponding author
| |
Collapse
|
4
|
Luo Y, Vermeer MH, de Gruijl FR, Zoutman WH, Sluijter M, van Hall T, Tensen CP. In vivo modelling of cutaneous T-cell lymphoma: The role of SOCS1. Front Oncol 2022; 12:1031052. [PMID: 36505769 PMCID: PMC9730277 DOI: 10.3389/fonc.2022.1031052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Mycosis fungoides (MF), the most common type of Cutaneous T cell Lymphoma (CTCL), is characterized by an inflamed skin intermixed with proliferating malignant mature skin-homing CD4+ T cells. Detailed genomic analyses of MF skin biopsies revealed several candidate genes possibly involved in genesis of these tumors and/or potential targets for therapy. These studies showed, in addition to common loss of cell cycle regulator CDKN2A, activation of several oncogenic pathways, most prominently and consistently involving JAK/STAT signaling. SOCS1, an endogenous inhibitor of the JAK/STAT signaling pathway, was identified as a recurrently deleted gene in MF, already occurring in the earliest stages of the disease. Methods To explore the mechanisms of MF, we create in vivo mouse models of autochthonous CTCLs and these genetically engineered mouse models (GEMMS) can also serve as valid experimental models for targeted therapy. We describe the impact of allelic deletion of Socs1 in CD4 T cells of the skin. To achieve this, we crossed inducible Cre-transgenic mice in the CD4 lineage with transgenic mice carrying floxed genes of Socs1. We first determined optimal conditions for Socs1 ablation with limited effects on circulating CD4 T-cells in blood. Next, we started time-course experiments mimicking sustained inflammation, typical in CTCL. FACS analysis of the blood was done every week. Skin biopsies were analyzed by immunocytochemical staining at the end of the experiment. Results We found that the Socs1 knockout transgenic group had thicker epidermis of treated skin compared with the control group and had more CD3 and CD4 in the skin of the transgenic group compared to the control group. We also noted more activation of Stat3 by staining for P-Stat3 in Socs1 knockout compared to wt CD4+T cells in the skin. The results also indicated that single copy loss of Socs1 in combination with sustained inflammation is insufficient to start a phenotype resembling early stage mycosis fungoides within eight weeks in these mice. Conclusion In sum, we developed and optimized an autochthonous murine model permitting selective knockout of Socs1 in skin infiltrating CD4 T-cells. This paves the way for more elaborate experiments to gain insight in the oncogenesis of CTCL.
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten H. Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank R. de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Willem H. Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis P. Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Cornelis P. Tensen,
| |
Collapse
|
5
|
Zhao X, Peng T, Cao X, Hou Y, Li R, Han T, Fan Z, Zhao M, Chang Y, Chen H, Li C, Huang X. In vivo G-CSF treatment activates the GR-SOCS1 axis to suppress IFN-γ secretion by natural killer cells. Cell Rep 2022; 40:111342. [PMID: 36103837 DOI: 10.1016/j.celrep.2022.111342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that are involved in controlling tumors or microbial infections through the production of interferon gamma (IFN-γ). Granulocyte colony-stimulating factor (G-CSF) inhibits IFN-γ secretion by NK cells, but the mechanism underlying this effect remains unclear. Here, by comparing the multi-omics profiles of human NK cells before and after in vivo G-CSF treatment, we identify a pathway that is activated in response to G-CSF treatment, which suppresses IFN-γ secretion in NK cells. Specifically, glucocorticoid receptors (GRs) activated by G-CSF inhibit secretion of IFN-γ by promoting interactions between SOCS1 promoters and enhancers, as well as increasing the expression of SOCS1. Experiments in mice confirm that G-CSF treatment significantly downregulates IFN-γ secretion and upregulates GR and SOCS1 expression in NK cells. In addition, GR blockade by the antagonist RU486 significantly reverses the effects of G-CSF, demonstrating that GRs upregulate SOCS1 and inhibit the production of IFN-γ by NK cells.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting Peng
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Xunhong Cao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingping Hou
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Ruifeng Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zeying Fan
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingjun Chang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hebin Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Xiaojun Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|