Midya J, Auth T, Gompper G. Membrane-Mediated Interactions Between Nonspherical Elastic Particles.
ACS NANO 2023;
17:1935-1945. [PMID:
36669092 PMCID:
PMC9933614 DOI:
10.1021/acsnano.2c05801]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The transport of particles across lipid-bilayer membranes is important for biological cells to exchange information and material with their environment. Large particles often get wrapped by membranes, a process which has been intensively investigated in the case of hard particles. However, many particles in vivo and in vitro are deformable, e.g., vesicles, filamentous viruses, macromolecular condensates, polymer-grafted nanoparticles, and microgels. Vesicles may serve as a generic model system for deformable particles. Here, we study nonspherical vesicles with various sizes, shapes, and elastic properties at initially planar lipid-bilayer membranes. Using the Helfrich Hamiltonian, triangulated membranes, and energy minimization, we predict the interplay of vesicle shapes and wrapping states. Increasing particle softness enhances the stability of shallow-wrapped and deep-wrapped states over nonwrapped and complete-wrapped states. The free membrane mediates an interaction between partial-wrapped vesicles. For the pair interaction between deep-wrapped vesicles, we predict repulsion. For shallow-wrapped vesicles, we predict attraction for tip-to-tip orientation and repulsion for side-by-side orientation. Our predictions may guide the design and fabrication of deformable particles for efficient use in medical applications, such as targeted drug delivery.
Collapse