1
|
Yang Y, Wang YX, Lei YZ, Cheng P. Asymmetric triply bridged lanthanide binuclear clusters with distinctly different magnetic behaviors. Dalton Trans 2024; 53:19097-19101. [PMID: 39558829 DOI: 10.1039/d4dt02652g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Isostructural binuclear clusters Gd and Dy with antiferromagnetic and ferromagnetic couplings separately exhibit single-molecule magnetic behavior and strong magnetocaloric entropy.
Collapse
Affiliation(s)
- Yue Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Materia Chemistry, Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu-Xia Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materia Chemistry, Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Yu-Zhe Lei
- Department of Chemistry, Key Laboratory of Advanced Energy Materia Chemistry, Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materia Chemistry, Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
2
|
Li X, Sun X, Wei C, Huang FP, Liu HT, Tian H. Single-Molecule Magnet Rods: Remarkably Elongated Lanthanide Phosphonate Cores with Quasilinear Hydrazones. Inorg Chem 2024; 63:16393-16403. [PMID: 39163558 DOI: 10.1021/acs.inorgchem.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Large metal-phosphonate clusters typically exhibit regular polyhedral, wheel-shaped, spherical, or capsule-shaped morphologies more effectively than high-aspect ratio topologies. A system of elongated lanthanide core topologies has now been synthesized by the reaction of lanthanide 1-naphthylmethylphosphonates and four differently terminated pyrazinyl hydrazones. Four new rod-shaped dysprosium phosphonate clusters, [Dy6(O3PC11H9)4(L1)4(μ4-O)(DMF)4]·2DMF·3MeCN·3H2O (1), [Dy8(O3PC11H9)4(L2)4(μ3-O)4(CO2)4(H2O)4]·6DMF·4MeCN·3H2O (2), [Dy12Na(O3PC11H9)6(L3)6(μ3-O)2(pyr)6]·DMF·2MeCN·H2O (3), and [Dy14(O3PC11H9)12(L4)8(μ3-O)2(DMF)4(MeOH)2(H2O)4]·5DMF·2MeCN·H2O (4), were obtained. Four single-pyrazinyl hydrazones function as pentadentate bis-chelate terminal co-ligands, coordinating the periphery of dysprosium phosphonate rods. A sodium ion serves as a cation template for constructing heterobimetallic 3 by occupying the void, demonstrating the ability to reliably control cluster length by modifying the hydrazone co-ligand structure and cation template. Additionally, it was observed that the elongation of the rods has a significant directional impact on the magnetic relaxation behavior, transitioning from a one-step process in 1 to a three-step process in 2, a two-step process in 3, and finally a two-step process in 4.
Collapse
Affiliation(s)
- XiaoJuan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Chaolun Wei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hou-Ting Liu
- Food and Biochemistry Engineering Department, Yantai Vocational College, Yantai 264006, China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
3
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Wang Y, Zhou Y, Ma Y, Lu P, Zhang Y, Sun Y, Cheng P. Magnetodielectric Effect in a Triangular Dysprosium Single-Molecule Toroics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308220. [PMID: 38233211 PMCID: PMC10933626 DOI: 10.1002/advs.202308220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Single-molecule toroics are molecular magnets with vortex distribution of magnetic moments. The coupling between magnetic and electric properties such as the magnetodielectric effect will provide potential applications for them. Herein, the observation of significant magnetodielectric effect in a triangular Dy3 crystal with toroidal magnetic moment and multiple magnetic relaxations is reported. The analysis of magnetic and electric properties implies that the magnetodielectric effect is closely related to the strong spin-lattice coupling, magnetic interactions of Dy3+ ions, as well as molecular packing models.
Collapse
Affiliation(s)
- Yu‐Xia Wang
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesCollege of ChemistryTianjin Normal UniversityTianjin300387P. R. China
| | - Yicheng Zhou
- Key Laboratory of Advanced Energy Material ChemistryFrontiers Science Center for New Organic Matterand Haihe Laboratory of Sustainable Chemical Transformations (Tianjin)College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yinina Ma
- State Key Laboratory of MagnetismInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Peipei Lu
- College of PhysicsHebei Normal UniversityShijiazhuang050024China
| | - Yi‐Quan Zhang
- Jiangsu Key Lab for NSLSCSSchool of Physical Science and TechnologyNanjing Normal UniversityNanjing210023P. R. China
| | - Young Sun
- State Key Laboratory of MagnetismInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- Center of Quantum Materials and Devices and Department of Applied PhysicsChongqing UniversityChongqing401331P. R. China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Material ChemistryFrontiers Science Center for New Organic Matterand Haihe Laboratory of Sustainable Chemical Transformations (Tianjin)College of ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
5
|
Rzepiela J, Liberka M, Zychowicz M, Wang J, Tokoro H, Piotrowska K, Baś S, Ohkoshi SI, Chorazy S. SHG-active luminescent thermometers based on chiral cyclometalated dicyanidoiridate(iii) complexes. Inorg Chem Front 2024; 11:1366-1380. [PMID: 38420599 PMCID: PMC10897766 DOI: 10.1039/d3qi02482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Multifunctional optical materials can be realized by combining stimuli-responsive photoluminescence (PL), e.g., optical thermometry, with non-linear optical (NLO) effects, such as second-harmonic generation (SHG). We report a novel approach towards SHG-active luminescent thermometers achieved by constructing unique iridium(iii) complexes, cis-[IrIII(CN)2(R,R-pinppy)2]- (R,R-pinppy = (R,R)-2-phenyl-4,5-pinenopyridine), bearing both a chiral 2-phenylpyridine derivative and cyanido ligands, the latter enabling the formation of a series of molecular materials: (TBA)[IrIII(CN)2(R,R-pinppy)2]·2MeCN (1) (TBA+ = tetrabutylammonium) and (nBu-DABCO)2[IrIII(CN)2(R,R-pinppy)2](i)·MeCN (2) (nBu-DABCO+ = 1-(n-butyl)-1,4-diazabicyclo-[2.2.2]octan-1-ium) hybrid salts, (TBA)2{[LaIII(NO3)3(H2O)0.5]2[IrIII(CN)2(R,R-pinppy)2]2} (3) square molecules, and {[LaIII(NO3)2(dmf)3][IrIII(CN)2(R,R-pinppy)2]}·MeCN (4) coordination chains. Thanks to the chiral pinene group, 1-4 crystallize in non-centrosymmetric space groups leading to SHG activity, while the N,C-coordination of ppy-type ligands to Ir(iii) centers generates visible charge-transfer (CT) photoluminescence. The PL characteristics are distinctly temperature-dependent which was utilized in achieving ratiometric optical thermometry below 220 K. The PL phenomena were rationalized by DFT/TD-DFT calculations indicating an MLCT-type of the emission in obtained Ir(iii) complexes with the rich vibronic structure providing a few emission bands that variously depend on temperature due to the role of thermally activated vibrations. As these crucial vibrational modes depend on the crystal lattice, the thermometry performance differs within 1-4 being the most efficient in 4 while the SHG is by far the best also for 4. This proves that pinene-functionalized cyclometalated dicyanidoiridates(iii) are great prerequisites for tunable PL-NLO conjunction with the most effective multifunctionality ensured by the insertion of these anions into bimetallic frameworks.
Collapse
Affiliation(s)
- Jan Rzepiela
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Michal Liberka
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Kinga Piotrowska
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Sebastian Baś
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
6
|
Feng L, Yang Y, Wang YX, Zhao Y, Liu ZY, Cong J, Zhang YQ, Cheng P. Reversible single-crystal to single-crystal transformation between triangular single-molecule toroics. Dalton Trans 2023; 52:16596-16600. [PMID: 37955190 DOI: 10.1039/d3dt03191h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We report a method for synthesizing single-molecule magnets through a single-crystal to single-crystal transformation. This process yields two single-molecule magnets with similar triangular Dy3 cores but distinct solvents and space groups achieved via solvent exchange. Magnetic properties reveal that both Dy3 molecules exhibit similar toroidal moments but manifest diverse multiple magnetization dynamic behaviors owing to the spin-lattice coupling influence from different solvent molecules.
Collapse
Affiliation(s)
- Lixi Feng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Xia Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Yizhen Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhong-Yi Liu
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Junzhuang Cong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Kaushik K, Mehta S, Das M, Ghosh S, Kamilya S, Mondal A. Stimuli-responsive magnetic materials: impact of spin and electronic modulation. Chem Commun (Camb) 2023; 59:13107-13124. [PMID: 37846652 DOI: 10.1039/d3cc04268e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|