1
|
Kim HJ, Kim B, Yun S, Yun DJ, Choi T, Lee S, Minami D, Heo CJ, Lim J, Shibuya H, Lim Y, Shin J, Hong H, Park JI, Fang F, Seo H, Yi J, Park S, Lee HH, Park KB. Dual Chalcogen-Bonding Interaction for High-Performance Filterless Narrowband Organic Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309634. [PMID: 38845070 DOI: 10.1002/smll.202309634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/24/2024] [Indexed: 10/01/2024]
Abstract
A novel green-absorbing organic molecule featuring dual intramolecular chalcogen bonds is synthesized and characterized. This molecule incorporates two such bonds: one between a tellurium atom and the oxygen atom of a carbonyl moiety, and the other between the tellurium atom and the adjacent nitrogen atom within a pyridine moiety. The molecule, featuring dual intramolecular chalcogen bonds exhibits a narrow absorption spectrum and elevated absorption coefficients, closely aligned with a resonance parameter of approximately 0.5. This behavior is due to its cyanine-like characteristics and favorable electrical properties, which are a direct result of its rigid, planar molecular structure. Therefore, this organic molecule forming dual intramolecular chalcogen bonds achieves superior optoelectronic performance in green-selective photodetectors, boasting an external quantum efficiency of over 65% and a full-width at half maximum of less than 95 nm while maintaining the performance after 1000 h of heating aging at 85 °C. Such organic photodetectors are poised to enhance stacked organic photodetector-on-silicon hybrid image sensors, paving the way for the next-generation of high-resolution and high-sensitivity image sensors.
Collapse
Affiliation(s)
- Hyeong-Ju Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Bongsu Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungyoung Yun
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Dong-Jin Yun
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Taejin Choi
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sangjun Lee
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Daiki Minami
- Innovation Center, Samsung Electronics, Co. Ltd., 1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Chul-Joon Heo
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Juhyung Lim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hiromasa Shibuya
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Younhee Lim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jisoo Shin
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyerim Hong
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeong-Il Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Feifei Fang
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hwijoung Seo
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jeoungin Yi
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sangho Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Hyun Hwi Lee
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang, 37673, Republic of Korea
| | - Kyung-Bae Park
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| |
Collapse
|
2
|
Zhu Y, Chen H, Han R, Qin H, Yao Z, Liu H, Ma Y, Wan X, Li G, Chen Y. High-speed flexible near-infrared organic photodiode for optical communication. Natl Sci Rev 2024; 11:nwad311. [PMID: 38312386 PMCID: PMC10833469 DOI: 10.1093/nsr/nwad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024] Open
Abstract
Optical communication is a particularly compelling technology for tackling the speed and capacity bottlenecks in data communication in modern society. Currently, the silicon photodetector plays a dominant role in high-speed optical communication across the visible-near-infrared spectrum. However, its intrinsic rigid structure, high working bias and low responsivity essentially limit its application in next-generation flexible optoelectronic devices. Herein, we report a narrow-bandgap non-fullerene acceptor (NFA) with a remarkable π-extension in the direction of both central and end units (CH17) with respect to the Y6 series, which demonstrates a more effective and compact 3D molecular packing, leading to lower trap states and energetic disorders in the photoactive film. Consequently, the optimized solution-processed organic photodetector (OPD) with CH17 exhibits a remarkable response time of 91 ns (λ = 880 nm) due to the high charge mobility and low parasitic capacitance, exceeding the values of most commercial Si photodiodes and all NFA-based OPDs operating in self-powered mode. More significantly, the flexible OPD exhibits negligible performance attenuation (<1%) after bending for 500 cycles, and maintains 96% of its initial performance even after 550 h of indoor exposure. Furthermore, the high-speed OPD demonstrates a high data transmission rate of 80 MHz with a bit error rate of 3.5 [Formula: see text] 10-4, meaning it has great potential in next-generation high-speed flexible optical communication systems.
Collapse
Affiliation(s)
- Yu Zhu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Hongbin Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Ruiman Han
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Hao Qin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Zhaoyang Yao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yanfeng Ma
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Ruiz-Preciado LA, Pešek P, Guerra-Yánez C, Ghassemlooy Z, Zvánovec S, Hernandez-Sosa G. Inkjet-printed high-performance and mechanically flexible organic photodiodes for optical wireless communication. Sci Rep 2024; 14:3296. [PMID: 38332022 PMCID: PMC10853278 DOI: 10.1038/s41598-024-53796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Emerging areas such as the Internet of Things (IoT), wearable and wireless sensor networks require the implementation of optoelectronic devices that are cost-efficient, high-performing and capable of conforming to different surfaces. Organic semiconductors and their deposition via digital printing techniques have opened up new possibilities for optical devices that are particularly suitable for these innovative fields of application. In this work, we present the fabrication and characterization of high-performance organic photodiodes (OPDs) and their use as an optical receiver in an indoor visible light communication (VLC) system. We investigate and compare different device architectures including spin-coated, partially-printed, and fully-printed OPDs. The presented devices exhibited state-of-the-art performance and reached faster detection speeds than any other OPD previously reported as organic receivers in VLC systems. Finally, our results demonstrate that the high-performance of the fabricated OPDs can be maintained in the VLC system even after the fabrication method is transferred to a fully-inkjet-printed process deposited on a mechanically flexible substrate. A comparison between rigid and flexible samples shows absolute differences of only 0.2 b s-1 Hz-1 and 2.9 Mb s-1 for the spectral efficiency and the data rate, respectively.
Collapse
Affiliation(s)
- Luis Arturo Ruiz-Preciado
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyererstr. 4, 69115, Heidelberg, Germany
| | - Petr Pešek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Dejvice-Praha 6, 16627, Prague, Czech Republic
| | - Carlos Guerra-Yánez
- Faculty of Electrical Engineering, Czech Technical University in Prague, Dejvice-Praha 6, 16627, Prague, Czech Republic
| | - Zabih Ghassemlooy
- Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle, UK
| | - Stanislav Zvánovec
- Faculty of Electrical Engineering, Czech Technical University in Prague, Dejvice-Praha 6, 16627, Prague, Czech Republic.
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131, Karlsruhe, Germany.
- InnovationLab, Speyererstr. 4, 69115, Heidelberg, Germany.
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|