1
|
Goh B, Choi J. Mechanics of granular distribution of aligned carbon nanotube bundles. NANOSCALE 2025. [PMID: 40421779 DOI: 10.1039/d5nr00539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The diameter of an aligned multiwalled carbon nanotube (MWCNT) is critical to creating electric double-layer capacitance in yarn twists. Despite the various fabrication geometries of MWCNT yarns, the formation mechanism of the radial diameter gradient within the yarns remains unknown. In this study, we investigated the mechanical behavior of aligned MWCNTs when they pass through each other using all-atom molecular dynamics simulations. Nonlinear attraction and repulsion occur during passage owing to the contact between the MWCNT surfaces and radial collapse. In silico quantification of adhesion and strain energies revealed that the larger the difference in diameter between MWCNTs, the easier it is for them to pass through each other. The dynamics demonstrated a granular distribution in the MWCNT bundle. Under twisting pressure, the small- and large-diameter MWCNTs were penetrated and sieved into the yarn core and sheath, respectively.
Collapse
Affiliation(s)
- Byeonghwa Goh
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Joonmyung Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Cheng P, Zou Y, Li Z. Harvesting Water Energy through the Liquid-Solid Triboelectrification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47050-47074. [PMID: 39207453 DOI: 10.1021/acsami.4c09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The escalating energy and environmental challenges have catalyzed a global shift toward seeking more sustainable, economical, and eco-friendly energy solutions. Water, capturing 35% of the Earth's solar energy, represents a vast reservoir of clean energy. However, current industrial capabilities harness only a fraction of the energy within the hydrological cycle. The past decade has seen rapid advancements in nanoscience and nanomaterials leading to a comprehensive exploration of liquid-solid triboelectrification as a low-carbon, efficient method for water energy harvesting. This review explores two fundamental principle models involved in liquid-solid triboelectrification. On the basis of these models, two distinct types of water energy harvesting devices, including droplet-based nanogenerators and water evaporation-induced nanogenerators, are summarized from their working principles, recent developments, materials, structures, and performance optimization techniques. Additionally, the applications of these nanogenerators in energy harvesting, self-powered sensing, and healthcare are also discussed. Ultimately, the challenges and future prospects of liquid-solid triboelectrification are further explored.
Collapse
Affiliation(s)
- Peng Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Oh S, Kim HJ, Lee S, Kim KJ, Kim SH. Carbon Nanotube Sheets/Elastomer Bilayer Harvesting Electrode with Biaxially Generated Electrical Energy. Polymers (Basel) 2024; 16:2477. [PMID: 39274111 PMCID: PMC11398110 DOI: 10.3390/polym16172477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Mechanical energy harvesters made from soft and flexible materials can be employed as energy sources for wearable and implantable devices. However, considering how human organs and joints expand and bend in many directions, the energy generated in response to a mechanical stimulus in only one direction limits the applicability of mechanical energy harvesters. Here, we report carbon nanotube (CNT) sheets/an elastomer bilayer harvesting electrode (CBHE) that converts two-axis mechanical stimulation into electrical energy. The novel microwinkled structure of the CBHE successfully demonstrates an electrochemical double-layer (EDL) capacitance change from biaxial mechanical stimulation, thereby generating electrical power (0.11 W kg-1). Additionally, the low modulus (0.16 MPa) and high deformability due to the elastomeric substrate suggest that the CBHE can be applied to the human body.
Collapse
Affiliation(s)
- Seongjae Oh
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Hyeon Ji Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Seon Lee
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Keon Jung Kim
- Semiconductor R&D Center, Samsung Electronics, Hwaseong 18448, Republic of Korea
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| |
Collapse
|
4
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
5
|
Xiahou X, Wu S, Guo X, Li H, Chen C, Xu M. Strategies for enhancing low-frequency performances of triboelectric, electrochemical, piezoelectric, and dielectric elastomer energy harvesting: recent progress and challenges. Sci Bull (Beijing) 2023; 68:1687-1714. [PMID: 37451961 DOI: 10.1016/j.scib.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Mechanical energy harvesting transforms various forms of mechanical energy, including ocean waves, wind, and human motions, into electrical energy, providing a viable solution to address the depletion of fossil fuels and environmental problems. However, one major obstacle for the direct conversion of mechanical energy into electricity is the low frequency of the majority of mechanical energy sources (≤5 Hz), resulting in low energy conversion efficiency, output power and output current. Over recent years, a numerous innovative technologies have been reported to enable improved energy harvesting utilizing various mechanisms. This review aims to present an in-depth analysis of the research progress in low-frequency energy harvesting technologies that rely on triboelectric, electrochemical, piezoelectric, and dielectric elastomer effects. The discussion commences with an overview of the difficulties associated with low-frequency energy harvesting. The critical aspects that impact the low-frequency performance of mechanical energy harvesters, including working mechanisms, environmental factors, and device compositions, are elucidated, while the advantages and disadvantages of different mechanisms in low-frequency operation are compared and summarized. Moreover, this review expounds on the strategies that can improve the low-frequency energy harvesting performance through the modulations of material compositions, structures, and devices. It also showcases the applications of mechanical energy harvesters in energy harvesting via waves, wind, and human motions. Finally, the recommended choices of mechanical energy harvesters with different mechanisms for various applications are offered, which can assist in the design and fabrication process.
Collapse
Affiliation(s)
- Xingzi Xiahou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sijia Wu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Guo
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huajian Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Chen
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Xu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Hu X, Bao X, Zhang M, Fang S, Liu K, Wang J, Liu R, Kim SH, Baughman RH, Ding J. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303035. [PMID: 37209369 DOI: 10.1002/adma.202303035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Indexed: 05/22/2023]
Abstract
There has been enormous interest in technologies that generate electricity from ambient energy such as solar, thermal, and mechanical energy, due to their potential for providing sustainable solutions to the energy crisis. One driving force behind the search for new energy-harvesting technologies is the desire to power sensor networks and portable devices without batteries, such as self-powered wearable electronics, human health monitoring systems, and implantable wireless sensors. Various energy harvesting technologies have been demonstrated in recent years. Among them, electrochemical, hydroelectric, triboelectric, piezoelectric, and thermoelectric nanogenerators have been extensively studied because of their special physical properties, ease of application, and sometimes high obtainable efficiency. Multifunctional carbon nanotubes (CNTs) have attracted much interest in energy harvesting because of their exceptionally high gravimetric power outputs and recently obtained high energy conversion efficiencies. Further development of this field, however, still requires an in-depth understanding of harvesting mechanisms and boosting of the electrical outputs for wider applications. Here, various CNT-based energy harvesting technologies are comprehensively reviewed, focusing on working principles, typical examples, and future improvements. The last section discusses the existing challenges and future directions of CNT-based energy harvesters.
Collapse
Affiliation(s)
- Xinghao Hu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xianfu Bao
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kangyu Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jian Wang
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runmin Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|