1
|
Yang Y, Min F, Wang Y, Guo L, Long H, Qu Z, Zhang K, Wang Y, Yang J, Chen Y, Meng L, Qiao Y, Song Y. Solution-Processed Micro-Nanostructured Electron Transport Layer via Bubble-Assisted Assembly for Efficient Perovskite Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408448. [PMID: 39328020 DOI: 10.1002/adma.202408448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organic-inorganic halide perovskite solar cells (PSCs) have attracted significant attention in photovoltaic research, owing to their superior optoelectronic properties and cost-effective manufacturing techniques. However, the unbalanced charge carrier diffusion length in perovskite materials leads to the recombination of photogenerated electrons and holes. The inefficient charge carrier collecting process severely affects the power conversion efficiency (PCE) of the PSCs. Herein, a solution-processed SnO2 array electron transport layer with precisely tunable micro-nanostructures is fabricated via a bubble-template-assisted approach, serving as both electron transport layers and scaffolds for the perovskite layer. Due to the optimized electron transporting pathway and enlarged perovskite grain size, the PSCs achieve a PCE of 25.35% (25.07% certificated PCE).
Collapse
Affiliation(s)
- Yongrui Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanyi Min
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyang Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lutong Guo
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoran Long
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhiyuan Qu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juehan Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yu Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Meng
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Qiao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Gao G, Zhang Q, Deng K, Li L. Residual Stress Mitigation in Perovskite Solar Cells via Butterfly-Inspired Hierarchical PbI 2 Scaffold. ACS NANO 2024; 18:15003-15012. [PMID: 38816680 DOI: 10.1021/acsnano.4c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Residual stress in metal halide perovskite films intimately affects the photovoltaic figure of merit and longevity of perovskite solar cells. A delicate management of the crystallization kinetics is critical to the preparation of high-quality perovskite films. Only very limited methods, however, are available to regulate the residual stress of a perovskite film in a controllable manner, particularly for a perovskite film fabricated by a two-step method. Here, we demonstrate the construction of a hierarchical PbI2 scaffold inspired by Archaeoprepona demophon butterfly by combining an interlayer guided growth of porous structure and nanoimprinting. The hierarchically structured PbI2 that emulates the physical structure of the butterfly wing scale permits unimpeded permeation of organic amine salts and sufficient space for volume expansion during the crystallization process, accompanied by preferential perovskite growth of a defectless (001) crystal plane. The optimized perovskite film outperforms the control with reduced residual stress and defect density. Consequently, perovskite solar cells with a respectable power conversion efficiency reaching 23.4% (certified 23%) and an impressive open-circuit voltage of 1.184 V can be achieved. The target device can maintain 80% of initial efficiency after maximum power point tracking under illumination for 700 h. This work expands the range of engineering toward PbI2 by exploring a simultaneously tailored morphology and crystallinity and highlights the significance of a hierarchical PbI2 scaffold as an alternative choice to mitigate residual stress in a two-step processed perovskite active layer and boost the longevity of perovskite solar cells.
Collapse
Affiliation(s)
- Gui Gao
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, People's Republic of China
| | - Qinchao Zhang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, People's Republic of China
| | - Kaimo Deng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, People's Republic of China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
3
|
Li M, Bao Y, Hui W, Sun K, Gu L, Kang X, Wang D, Wang B, Deng H, Guo R, Li Z, Jiang X, Müller-Buschbaum P, Song L, Huang W. In Situ Surface Reconstruction toward Planar Heterojunction for Efficient and Stable FAPbI 3 Quantum Dot Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309890. [PMID: 38011853 DOI: 10.1002/adma.202309890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Pure-phase α-FAPbI3 quantum dots (QDs) are the focus of an increasing interest in photovoltaics due to their superior ambient stability, large absorption coefficient, and long charge-carrier lifetime. However, the trap states induced by the ligand-exchange process limit the photovoltaic performances. Here, a simple post treatment using methylamine thiocyanate is developed to reconstruct the FAPbI3 -QD film surface, in which a MAPbI3 capping layer with a thickness of 6.2 nm is formed on the film top. This planar perovskite heterojunction leads to a reduced density of trap-states, a decreased band gap, and a facilitated charge carrier transport. As a result, a record high power conversion efficiency (PCE) of 16.23% with negligible hysteresis is achieved for the FAPbI3 QD solar cell, and it retains over 90% of the initial PCE after being stored in ambient environment for 1000 h.
Collapse
Affiliation(s)
- Maoxin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yaqi Bao
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Hui
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Kun Sun
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Lei Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Xinxin Kang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Dourong Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Baohua Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Haoran Deng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Renjun Guo
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Zerui Li
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Xiongzhuo Jiang
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Lin Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Gao H, Zhang M, Xu Z, Chen Y, Hu Y, Yi Z, Huang J, Zhu H. Low-temperature synergistic effect of MA and Cl towards high-quality α-FAPbI 3 films for humid-air-processed perovskite solar cells. Dalton Trans 2023; 53:136-147. [PMID: 37718747 DOI: 10.1039/d3dt02051g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Due to the hydrophilicity and black-phase instability of FA perovskites, ambient humidity is an unavoidable issue in the processing of perovskite solar cells (PSCs). MACl is among the most popular additives for improving perovskite films, but our experiments confirm that the direct addition of MACl into the precursor solution deteriorates the stability of the final α-FAPbI3 films in humid air, which is attributed to the unwanted pinholes induced by MACl volatilization. To solve this problem, a novel confined-space annealing strategy (CSA) is intentionally developed to control the amount of MACl at a low level. Through retarding the volatilization of MACl and blocking moisture ingress, dense and δ-phase-free FAPbI3 films with excellent crystallinity and stability are achieved at 100 °C under high humidity (RH: 60 ± 10%). We further compare the same amounts of MAI and FACl additives with MACl, discovering that only when MA and Cl work together can pure α-FAPbI3 films be obtained; therefore, a mechanism of MA-assisted nucleation and Cl-induced diffusion recrystallization is inferred. As a result, the PSCs employing optimal films yield a champion power conversion efficiency (PCE) of 17.27% and retain over 90% of the initial PCE after exposure to high humidity for 480 h. Our results offer deep insights into the thermodynamic and kinetic behaviors of MA and Cl in film growth and are beneficial for air-processed FA-based PSCs for commercial application.
Collapse
Affiliation(s)
- Hao Gao
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Minghui Zhang
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Zicong Xu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Yichuan Chen
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Yuehui Hu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Zhijie Yi
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Jiayu Huang
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Hua Zhu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| |
Collapse
|