1
|
He X, Shi XL, Wu X, Li C, Liu WD, Zhang H, Yu X, Wang L, Qin X, Chen ZG. Three-dimensional flexible thermoelectric fabrics for smart wearables. Nat Commun 2025; 16:2523. [PMID: 40082483 PMCID: PMC11906656 DOI: 10.1038/s41467-025-57889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Wearable thermoelectric devices, capable of converting body heat into electrical energy, provide the potential driving power for the Internet of Things, artificial intelligence, and soft robotics. However, critical parameters have long been overlooked for these practical applications. Here, we report a three-dimensional flexible thermoelectric device with a structure featuring an inner rigid and outer flexible woven design. Such a structure includes numerous small static air pockets that create a stable out-of-plane temperature difference, enabling precise temperature signal detection (accuracy up to 0.02 K). Particularly, this structure exhibits excellent multi-signal decoupling capability, excellent elasticity (>10,000 compression cycles), ultra-fast compression response (20 ms), stable output signal under 50% compressive strain, high breathability (1300 mm s-1), and washability. All these metrics achieve the highest values currently reported, fully meeting the requirements for body heat and moisture exchange, as demonstrated in our designed integrated smart mask and smart glove systems based on vector machine learning technology. This work shows that our three-dimensional flexible thermoelectric device has broad applicability in wearable electronics.
Collapse
Affiliation(s)
- Xinyang He
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiaoyun Wu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chengzu Li
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, China
| | - Wen-Di Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, China
| | - Honghua Zhang
- Center for Civil Aviation Composites, College of Textiles, Donghua University, Shanghai, China
| | - Xuliang Yu
- Engineering Research Center of Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Liming Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, China.
| | - Xiaohong Qin
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, China.
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Liu JZ, Jiang W, Zhuo S, Rong Y, Li YY, Lu H, Hu J, Wang XQ, Chen W, Liao LS, Zhuo MP, Zhang KQ. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. SCIENCE ADVANCES 2025; 11:eadr2158. [PMID: 39752504 PMCID: PMC11698087 DOI: 10.1126/sciadv.adr2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile. These arrays were integrated with the radiation-modulated thermoelectric fabrics of electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membranes for the low-cost and high-performance wearable self-power application. Combined with the excellent photothermal properties of CNTs, the resulting thermoelectric fabric (0.2 square meters) achieves a substantial ΔT of 37 kelvin under a solar intensity of ~800 watt per square meter, yielding a peak power density of 0.20 milliwatt per square meter. This study offers a pragmatic pathway to simultaneously address thermal management and electricity generation in self-powered wearable applications by efficiently harvesting solar energy.
Collapse
Affiliation(s)
- Jin-Zhuo Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wangkai Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| | - Sheng Zhuo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yun Rong
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hang Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jianchen Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| | - Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| | - Weifan Chen
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Provincial International Cooperation Joint Laboratory for Sustainable Textile Materials and Engineering in Universities, Suzhou 215021, China
| |
Collapse
|
3
|
Wang Y, Zeng Z, Liu Y, Huang G, Zhang P, Ma X, Gao F, Zhang Z, Wang Y, Wang Y. Enhancing Lithium-Ion Batteries with a 3D Conductive Network Silicon-Carbon Nanotube Composite Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67791-67802. [PMID: 39607350 DOI: 10.1021/acsami.4c15909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
To meet the rising demand for energy storage, high-capacity Si anode-based lithium-ion batteries (LIBs) with extended cycle life and fast-charging capabilities are essential. However, Si anodes face challenges such as significant volume expansion and low electrical conductivity. This study synthesizes a porous spherical Si/Multi-Walled Carbon Nanotube (MWCNT)@C anode material via spray drying, combining Si nanoparticles, MWCNT dispersion, sucrose, and carboxymethyl cellulose (CMC). The MWCNT incorporation creates a robust 3D conductive network within the porous microspheres, enhancing Li+ diffusion and improving fast-charging/discharging performance. After 300 cycles at 1 A g-1, the material achieved a discharge capacity of 536.6 mA h g-1 with 80.5% capacity retention. Additionally, integrating a 3D network of Single-Walled Carbon Nanotubes (SWCNTs) further enhanced capacity retention in a binder-free, self-supporting electrode created through vacuum filtration. The Si/MWCNT@C//LiFePO4 full cell exhibited an initial Coulombic efficiency (ICE) exceeding 80%, with a specific capacity of 72.4 mA h g-1 and 79.8% capacity retention after 400 cycles at 1 A g-1. This study offers a promising strategy for improving the performance and structural design of Si anodes.
Collapse
Affiliation(s)
- Yuru Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhihua Zeng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Gang Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaodong Ma
- School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fan Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ziqiang Zhang
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ye Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Cao J, Yuan X, Zhang Y, Wang Q, He Q, Guo S, Ren X. Ultrasensitive Flexible Strain Sensor Made with Carboxymethyl-Cellulose-Anchored Carbon Nanotubes/MXene for Machine-Learning-Assisted Handwriting Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51447-51458. [PMID: 39276126 DOI: 10.1021/acsami.4c09786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The combination of wearable sensors with machine learning enables intelligent perception in human-machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.
Collapse
Affiliation(s)
- Junming Cao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yangan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi He
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shaohua Guo
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
6
|
Shao B, Chen Z, Su H, Peng S, Song M. The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications. Int J Mol Sci 2024; 25:6152. [PMID: 38892343 PMCID: PMC11172637 DOI: 10.3390/ijms25116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro-nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Zhitao Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Hengzhe Su
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Chen S, Bai M, Wang Q, Li X, Shao J, Shi SQ, Zhou W, Cao J, Li J. A strong and tough supramolecular assembled β-cyclodextrin and chitin nanocrystals protein adhesive: Synthesis, characterization, bonding performance on three-layer plywood. Carbohydr Polym 2024; 333:121971. [PMID: 38494225 DOI: 10.1016/j.carbpol.2024.121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
The development of a biomass adhesive as a substitute for petroleum-derived adhesives has been considered a viable option. However, achieving both superior bonding strength and toughness in biomass adhesives remains a significant challenge. Inspired by the human skeletal muscles structure, this study reveals a promising supramolecular structure using tannin acid (TA) functionalized poly-β-cyclodextrin (PCD) (TA@PCD) as elastic tissues and chitin nanocrystals (ChNCs) as green reinforcements to strengthen the soybean meal (SM) adhesive crosslinking network. TA@PCD acts as a dynamic crosslinker that facilitates reversible host-guest interactions, hydrogen bonds, and electrostatic interactions between adjacent stiff ChNCs and SM matrix, resulting in satisfactory strength and toughness. The resulting SM/TA@PCD/ChNCs-2 adhesive has demonstrated satisfactory wet and dry shear strength (1.25 MPa and 2.57 MPa, respectively), toughness (0.69 J), and long-term solvents resistance (80 d). Furthermore, the adhesive can exhibit desirable antimildew characteristics owing to the phenol hydroxyl groups of TA and amino groups of ChNCs. This work showcases an effective supramolecular chemistry strategy for fabricating high-performance biomass adhesives with great potential for practical applications.
Collapse
Affiliation(s)
- Shiqing Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mingyang Bai
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qihang Wang
- Center for Water and Ecology, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinyi Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiawei Shao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Sheldon Q Shi
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA
| | - Wenrui Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jinfeng Cao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Rocha J, de Oliveira JC, Bettini J, Strauss M, Selmi GS, Okazaki AK, de Oliveira RF, Lima RS, Santhiago M. Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine. ACS MEASUREMENT SCIENCE AU 2024; 4:188-200. [PMID: 38645575 PMCID: PMC11027207 DOI: 10.1021/acsmeasuresciau.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 04/23/2024]
Abstract
Electrochemical paper-based analytical devices represent an important platform for portable, low-cost, affordable, and decentralized diagnostics. For this kind of application, chemical functionalization plays a pivotal role to ensure high clinical performance by tuning surface properties and the area of electrodes. However, controlling different surface properties of electrodes by using a single functionalization route is still challenging. In this work, we attempted to tune the wettability, chemical composition, and electroactive area of carbon-paper-based devices by thermally treating polydopamine (PDA) at different temperatures. PDA films were deposited onto pyrolyzed paper (PP) electrodes and thermally treated in the range of 300-1000 °C. After deposition of PDA, the surface is rich in nitrogen and oxygen, it is superhydrophilic, and it has a high electroactive area. As the temperature increases, the surface becomes hydrophobic, and the electroactive area decreases. The surface modifications were followed by Raman, X-ray photoelectron microscopy (XPS), laser scanning confocal microscopy (LSCM), contact angle, scanning electron microscopy (SEM-EDS), electrical measurements, transmission electron microscopy (TEM), and electrochemical experiments. In addition, the chemical composition of nitrogen species can be tuned on the surface. As a proof of concept, we employed PDA-treated surfaces to anchor [AuCl4]- ions. After electrochemical reduction, we observed that it is possible to control the size of the nanoparticles on the surface. Our route opens a new avenue to add versatility to electrochemical interfaces in the field of paper-based electrochemical biosensors.
Collapse
Affiliation(s)
- Jaqueline
F. Rocha
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| | - Julia C. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Jefferson Bettini
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Mathias Strauss
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Guilherme S. Selmi
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Anderson K. Okazaki
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
| | - Rafael F. de Oliveira
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Universidade
Estadual de Campinas, Instituto de Física
Gleb Wataghin, São Paulo, Campinas 13083-859, Brazil
| | - Renato S. Lima
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
- Institute
of Chemistry, University of Campinas, São Paulo, Campinas 13083-970, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo, São Paulo, São Carlos 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, São Paulo, Campinas 13083-100, Brazil
- Federal
University of ABC, São Paulo, Santo André 09210-580, Brazil
| |
Collapse
|
9
|
Xu Y, Tan C, He Y, Luo B, Liu M. Chitin nanocrystals stabilized liquid metal for highly stretchable and anti-freeze hydrogels as flexible strain sensor. Carbohydr Polym 2024; 328:121728. [PMID: 38220327 DOI: 10.1016/j.carbpol.2023.121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Conductive hydrogels show extensive applications in flexible electronics and biomedical areas, but it is a challenge to simultaneously achieve high mechanical properties, satisfied electrical conductivity, good biocompatibility, self-recovery and anti-freezing properties through a simple preparation method. Herein, chitin nanocrystals (ChNCs) were employed to encapsulate liquid metal nanoparticles (LMNPs) to ensure the dispersion stability of LMNPs in a hydrogel system composed of polyacrylamide (PAM) and polyvinyl alcohol (PVA). The synergistic effect of ChNCs-stabilized LMNPs imparts remarkable conductivity to the hydrogel, making it an effective strain sensor for human motion. With 1 % LMNPs, the composite hydrogel stretches up to 2100 %, showing excellent stretchability. Under 10 cycles of 200 % strain, hysteresis loop curves overlap, indicating outstanding fatigue resistance. The hydrogel exhibits remarkable self-recovery, enduring 1400 % deformation without rupture. In addition, its effective antifreeze properties result from immersion in a glycerol-water solvent. Even at -20 °C and 60 °C, the hydrogel maintains stable, reproducible resistance changes at 150 % tensile strain. Therefore, the high-performance conductive hydrogel containing ChNCs stabilized LM has promising applications in flexible wearable sensing devices.
Collapse
Affiliation(s)
- Yuqian Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Cuiying Tan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China; Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
10
|
Chen G, He Z, Liu Z, Li X, Yao Z, Zhang P. Highly Flexible and Foldable Paper-Based Thermoelectric Generator Prepared with Post-Treatment-Free PEDOT:PSS Hybrid Ink. Polymers (Basel) 2023; 15:4215. [PMID: 37959895 PMCID: PMC10647209 DOI: 10.3390/polym15214215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Paper-based thermoelectric (PTE) generators have recently emerged as a green technology that can help alleviate environment pollution and the energy crisis. In this work, a PTE generator was prepared by coating a post-treatment-free thermoelectric ink consisting of poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) doped with 1-ethyl-3-methylimidazolium:tricyanomethanide (EMIM:TCM) onto the card paper. By tuning the molar concentration of the EMIM:TCM to 0.17 M and with hot-pressing, the PTE generator showed a decent power factor (PF) value of 6.82 μW m-1 K-2, which was higher than the values of PTE in the literature. This phenomenon could be attributed to the synergistic effect of high-performance thermoelectric ink (i.e., PF = 175 μW m-1 K-2 when deposited on glass slide) and the hot-pressing. The hot-pressing enhanced the packing density of cellulose fibers and the associated PEDOT:PSS hybrid, which enabled the formation of long-range conductive paths. In addition, the PTE had good mechanical stability, indicated by no significant change of the power factor values after cyclic folding 10,000 times. Moreover, the structure of as-prepared PTE could be easily tuned into different shapes that are promising for the preparation of flexible wearable thermoelectric generators.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (G.C.); (Z.H.); (Z.L.); (X.L.); (Z.Y.)
| |
Collapse
|
11
|
Guo M, Cao Z, Liu Y, Ni Y, Chen X, Terrones M, Wang Y. Preparation of Tough, Binder-Free, and Self-Supporting LiFePO 4 Cathode by Using Mono-Dispersed Ultra-Long Single-Walled Carbon Nanotubes for High-Rate Performance Li-Ion Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207355. [PMID: 36905241 PMCID: PMC10161069 DOI: 10.1002/advs.202207355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Indexed: 05/06/2023]
Abstract
Low-contents/absence of non-electrochemical activity binders, conductive additives, and current collectors are a concern for improving lithium-ion batteries' fast charging/discharging performance and developing free-standing electrodes in the aspects of flexible/wearable electronic devices. Herein, a simple yet powerful fabricating method for the massive production of mono-dispersed ultra-long single-walled carbon nanotubes (SWCNTs) in N-methyl-2-pyrrolidone solution, benefiting from the electrostatic dipole interaction and steric hindrance of dispersant molecules, is reported. These SWCNTs form a highly efficient conductive network to firmly fix LiFePO4 (LFP) particles in the electrode at low contents of 0.5 wt% as conductive additives. The binder-free LFP/SWCNT cathode delivers a superior rate capacity of 161.5 mAh g-1 at 0.5 C and 130.2 mAh g-1 at 5 C, with a high-rate capacity retention of 87.4% after 200 cycles at 2 C. The self-supporting LFP/SWCNT cathode shows excellent mechanical properties, which can withstand at least 7.2 MPa stress and 5% strain, allowing the fabrication of high mass loading electrodes with thicknesses up to 39.1 mg cm-2 . Such self-supporting electrodes display conductivities up to 1197 S m-1 and low charge-transfer resistance of 40.53 Ω, allowing fast charge delivery and enabling near-theoretical specific capacities.
Collapse
Affiliation(s)
- Mingyi Guo
- College of Polymer Science and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Zengqiang Cao
- School of Physical Science and TechnologySouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Yukang Liu
- College of Polymer Science and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yuxiang Ni
- School of Physical Science and TechnologySouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Xianchun Chen
- College of Polymer Science and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Mauricio Terrones
- Department of PhysicsDepartment of ChemistryDepartment of Materials Science and Engineering and Center for 2‐Dimensional and Layered MaterialsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Yanqing Wang
- College of Polymer Science and EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|