1
|
Huang W, Pan Y, Zhong T, He S, Qi Y, Huang Y. Near-infrared 10B-BODIPY for precise guidance of tracer imaging and treatment in boron neutron capture therapy. Chem Commun (Camb) 2025; 61:9079-9082. [PMID: 40401390 DOI: 10.1039/d5cc01671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A new near-infrared fluorescence probe (PBA-BDP) was developed by coupling boron-10 (10B) to a phenylboronic acid (PBA)-functionalized BODIPY dye. This multifunctional probe not only delivers 10B for boron neutron capture therapy (BNCT) but also enhances tumor-specific targeting and provides dynamic insight into boron distribution during treatment.
Collapse
Affiliation(s)
- Wenyong Huang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
2
|
Lan T, Li M, Luo X, Du H, Lu X, Mao H, Guo H, Guo Q. Enhanced Renal Protection in Acute Kidney Injury with ROS-Activated Nanoparticles Targeting Oxidative Stress and Inflammation. ACS Biomater Sci Eng 2025; 11:2713-2726. [PMID: 40257281 DOI: 10.1021/acsbiomaterials.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Acute kidney injury (AKI) is often associated with oxidative stress, which leads to a range of pathological changes, including inflammation and cell apoptosis. These mechanisms highlight the crucial role of eliminating ROS in the pathogenesis of AKI. This study presented a ROS-activated drug delivery system, NPSPBA@Hib, designed for the targeted delivery of the anti-inflammatory and antioxidant drug hibifolin (Hib) to the kidneys, marking its inaugural application in AKI therapy. The drug loading of Hib was up to be 15% by conversely binding with the phenylboronic acid parts in the nanoparticles. NPSPBA@Hib increased cellular uptake of drugs in HK-2 cells and reduced oxidative stress-induced damage by scavenging ROS. The nanoparticles notably extended the retention of Hib in AKI kidneys when compared to healthy kidneys, leading to heightened accumulation in the renal tubules. NPSPBA@Hib demonstrated Hib's reno-protective effects by reducing oxidative stress and inflammation. In essence, this research serves as the primary confirmation of Hib's efficacy in inhibiting NLRP3 signaling pathway for the AKI treatment. The findings suggest that NPSPBA@Hib nanoparticles are effective in treating AKI, highlighting the promising potential of utilizing Hib as a natural antioxidant nanoplatform for AKI, as well as other ROS-related diseases.
Collapse
Affiliation(s)
- Tianyu Lan
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mei Li
- VIP Healthcare Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiuheng Luo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Haijun Du
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Honglei Guo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
3
|
Zhou S, Dai L, Pan L, Shen G, Qian Z. Phenylboronic acid-modified nanoparticles for cancer treatment. Chem Commun (Camb) 2025; 61:4595-4605. [PMID: 40036055 DOI: 10.1039/d4cc06730d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Phenylboronic acid (PBA) has emerged as a promising component in the design of functional nanomaterials for cancer treatment. PBA possesses unique characteristics such as pH/reactive oxygen species (ROS)-responsiveness, low cytotoxicity, stability, and the ability to target sialic acid residues overexpressed on cancer cell surfaces. PBA-modified nanomaterials can be utilized in various strategies, including chemotherapy, gene therapy, and phototherapy, to enhance drug delivery, cancer cell targeting, and therapeutic efficacy. This review examines the application of PBA-modified nanomaterials in cancer treatment, focusing on their roles in stimuli-responsive drug release and cancer cell targeting. The incorporation of PBA into nanoparticles, dendrimers, and other nanostructures has shown significant potential for improving the selectivity and efficacy of cancer therapeutics while minimizing adverse side effects. With ongoing research and development, PBA-based technologies have promising potential for further innovations in medical science, particularly in oncology.
Collapse
Affiliation(s)
- Siming Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Guohua Shen
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
5
|
Hu Y, Cui J, Sun J, Liu X, Gao S, Mei X, Wu C, Tian H. A novel biomimetic nanovesicle containing caffeic acid-coupled carbon quantum dots for the the treatment of Alzheimer's disease via nasal administration. J Nanobiotechnology 2024; 22:642. [PMID: 39425199 PMCID: PMC11490022 DOI: 10.1186/s12951-024-02912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive cognitive and physical impairment. Neuroinflammation is related to AD, and the misfolding and aggregation of amyloid protein in the brain creates an inflammatory microenvironment. Microglia are the predominant contributors to neuroinflammation, and abnormal activation of microglia induces the release of a large amount of inflammatory factors, promotes neuronal apoptosis, and leads to cognitive impairment. In this study, we used microglial membranes containing caffeic acid-coupled carbon quantum dots to prepare a novel biomimetic nanocapsule (CDs-CA-MGs) for the treatment of AD. The application of CDs-CA-MGs via nasal administration can bypass the blood‒brain barrier (BBB) and directly target the site of inflammation. After treatment with CDs-CA-MGs, AD mice showed reduced inflammation in the brain, decreased neuronal apoptosis, and significantly improved learning and memory abilities. In addition, CDs-CA-MGs affect inflammation-related JAK-STAT and Toll-like receptor signaling pathways in AD mice. CDs-CA-MGs significantly downregulated interleukins (IL-1β and IL-6) and tumor necrosis factor (TNF-α). This finding suggested that CDs-CA-MGs may improve cognitive impairment by modulating inflammatory responses. In conclusion, the use of CDs-CA-MGs provides a possible therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jingwen Cui
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Shuang Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xifan Mei
- Liaoning Vocational College of Medicine, Shenyang, Liaoning, 110101, China.
| | - Chao Wu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
6
|
Liu L, Wang W, Huang L, Xian Y, Ma W, Zhao L, Li Y, Zheng Z, Liu H, Wu D. Injectable Inflammation-Responsive Hydrogels for Microenvironmental Regulation of Intervertebral Disc Degeneration. Adv Healthc Mater 2024; 13:e2400717. [PMID: 38649143 DOI: 10.1002/adhm.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Chronic local inflammation and excessive cell apoptosis in nucleus pulposus (NP) tissue are the main causes of intervertebral disc degeneration (IDD). Stimuli-responsive hydrogels have great potential in the treatment of IDD by facilitating localized and controlled drug delivery. Herein, an injectable drug-loaded dual stimuli-responsive adhesive hydrogel for microenvironmental regulation of IDD, is developed. The gelatin methacryloyl is functionalized with phenylboronic acid groups to enhance drug loading capacity and enable dual stimuli-responsive behavior, while the incorporation of oxidized hyaluronic acid further improves the adhesive properties. The prepared hydrogel exhibits an enhanced drug loading capacity for diol-containing drugs, pH- and reactive oxygen species (ROS)-responsive behaviors, excellent radical scavenging efficiency, potent antibacterial activity, and favorable biocompatibility. Furthermore, the hydrogel shows a beneficial protective efficacy on NP cells within an in vitro oxidative stress microenvironment. The in vivo results demonstrate the hydrogel's excellent therapeutic effect on treating IDD by maintaining water retention, restoring disc height, and promoting NP regeneration, indicating that this hydrogel holds great potential as a promising therapeutic approach for regulating the microenvironment and alleviating the progression of IDD.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Yang J, Zhang P, Mao Y, Chen R, Cheng R, Li J, Sun H, Deng C, Zhong Z. CXCR4-Mediated Codelivery of FLT3 and BCL-2 Inhibitors for Enhanced Targeted Combination Therapy of FLT3-ITD Acute Myeloid Leukemia. Biomacromolecules 2024; 25:4569-4580. [PMID: 38869359 DOI: 10.1021/acs.biomac.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukemia (AML) is often associated with poor prognosis and survival. Small molecule inhibitors, though widening the treatment landscape, have limited monotherapy efficacy. The combination therapy, however, shows suboptimal clinical outcomes due to low bioavailability, overlapping systemic toxicity and drug resistance. Here, we report that CXCR4-mediated codelivery of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor sorafenib (SOR) via T22 peptide-tagged disulfide cross-linked polymeric micelles (TM) achieves synergistic treatment of FLT3-ITD AML. TM-VS with a VEN/SOR weight ratio of 1/4 and T22 peptide density of 20% exhibited an extraordinary inhibitory effect on CXCR4-overexpressing MV4-11 AML cells. TM-VS at a VEN/SOR dosage of 2.5/10 mg/kg remarkably reduced leukemia burden, prolonged mouse survival, and impeded bone loss in orthotopic MV4-11-bearing mice, outperforming the nontargeted M-VS and oral administration of free VEN/SOR. CXCR4-mediated codelivery of BCL-2 and FLT3 inhibitors has emerged as a prospective clinical treatment for FLT3-ITD AML.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Animals
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Humans
- Mice
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Sorafenib/pharmacology
- Sorafenib/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Micelles
Collapse
Affiliation(s)
- Jiakun Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Peng Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yumin Mao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Ran Chen
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- Soochow College, Soochow University, Suzhou 215123, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Li F, Wang H, Ye T, Guo P, Lin X, Hu Y, Wei W, Wang S, Ma G. Recent Advances in Material Technology for Leukemia Treatments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313955. [PMID: 38547845 DOI: 10.1002/adma.202313955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Leukemia is a widespread hematological malignancy characterized by an elevated white blood cell count in both the blood and the bone marrow. Despite notable advancements in leukemia intervention in the clinic, a large proportion of patients, especially acute leukemia patients, fail to achieve long-term remission or complete remission following treatment. Therefore, leukemia therapy necessitates optimization to meet the treatment requirements. In recent years, a multitude of materials have undergone rigorous study to serve as delivery vectors or direct intervention agents to bolster the effectiveness of leukemia therapy. These materials include liposomes, protein-based materials, polymeric materials, cell-derived materials, and inorganic materials. They possess unique characteristics and are applied in a broad array of therapeutic modalities, including chemotherapy, gene therapy, immunotherapy, radiotherapy, hematopoietic stem cell transplantation, and other evolving treatments. Here, an overview of these materials is presented, describing their physicochemical properties, their role in leukemia treatment, and the challenges they face in the context of clinical translation. This review inspires researchers to further develop various materials that can be used to augment the efficacy of multiple therapeutic modalities for novel applications in leukemia treatment.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiji Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Janani G, Girigoswami A, Girigoswami K. Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:415-441. [PMID: 38113194 DOI: 10.1080/09205063.2023.2294541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Leukemia is a cancer of blood cells that mainly affects the white blood cells. In acute myeloid leukemia (AML) sudden growth of cancerous cells occurs in blood and bone marrow, and it disrupts normal blood cell production. Most patients are asymptomatic, but it spreads rapidly and can become fatal if left untreated. AML is the prevalent form of leukemia in children. Risk factors of AML include chemical exposure, radiation, genetics, etc. Conventional diagnostic methods of AML are complete blood count tests and bone marrow aspiration, while conventional treatment methods involve chemotherapy, radiation therapy, and bone marrow transplant. There is a risk of cancer cells spreading progressively to the other organs if left untreated, and hence, early diagnosis is required. The conventional diagnostic methods are time- consuming and have drawbacks like harmful side effects and recurrence of the disease. To overcome these difficulties, nanoparticles are employed in treating and diagnosing AML. These nanoparticles can be surface- modified and can be used against cancer cells. Due to their enhanced permeability effect and high surface-to-volume ratio they will be able to reach the tumour site which cannot be reached by traditional drugs. This review article talks about how nanotechnology is more advantageous over the traditional methods in the treatment and diagnosis of AML.
Collapse
Affiliation(s)
- Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Chen R, Yang J, Mao Y, Zhao X, Cheng R, Deng C, Zhong Z. Antibody-Mediated Nanodrug of Proteasome Inhibitor Carfilzomib Boosts the Treatment of Multiple Myeloma. Biomacromolecules 2023; 24:5371-5380. [PMID: 37801632 DOI: 10.1021/acs.biomac.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy. For relapsed and refractory MM, a proteasome inhibitor, carfilzomib (CFZ), has become one of the few clinical options. CFZ suffers, nevertheless, metabolic instability and poor bioavailability and may induce severe cardiovascular and renal adverse events. Here, we report that daratumumab (Dar)-decorated polypeptide micelles (Dar-PMs) mediate the targeted delivery of CFZ to CD38-positive MM, effectively boosting its anti-MM efficacy. CFZ-loaded Dar-PMs (Dar-PMs-CFZ) exhibited an average diameter of ca. 80 nm and Dar density-dependent cell endocytosis and anti-MM activity, in which over 6-fold greater inhibitory effect to LP-1 and MM.1S MM cells than nontargeted PMs-CFZ control was achieved at a Dar density of 3.2 (Dar3.2-PMs-CFZ). Interestingly, Dar3.2-PMs-CFZ markedly enhanced the growth inhibition of orthotopic LP-1 MM in mice and significantly extended the median survival time compared with PMs-CFZ and free CFZ (95 days vs 60 and 54 days, respectively). In line with its high MM targetability and anti-MM efficacy, Dar3.2-PMs-CFZ revealed little toxic effects and effectively prevented osteolytic lesions. The antibody-targeted nanodelivery of a proteasome inhibitor appears to be an appealing strategy to treat multiple myeloma.
Collapse
Affiliation(s)
- Ran Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiakun Yang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yumin Mao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Zhang F, Pei G, Huang B, Xu J, Zhang L. Exploring release mechanisms by disrupting π-π stacking regions in stable micelles. J Mater Chem B 2023; 11:9246-9259. [PMID: 37721031 DOI: 10.1039/d3tb01388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
π-π stacking strategies can enhance the stability performance of delivery platforms but are often restricted by incomplete drug release performance, even with the help of crosslinking strategies. Therefore, there has been considerable interest in enhancing the drug release performance by disrupting the π-π stacking region (structural rearrangements). Herein, we synthesized poly(3-(isobutyloxy)-2-oxopropyl benzoate)-b-poly(2-hydroxybutyl methacrylate)-co-poly((ethylene glycol)methylether methacrylate) [PBOOPMA-b-P(HBMA-co-PEGMA), PHB] and revealed the drug release mechanism of PHB-based micelles. The structural rearrangements derived from the crosslinking strategy were revealed to improve the early release performance by 43-55% using micellar dissolutions. Moreover, the esterase-responsive strategy was elucidated to induce reassembly with 77-79% size variation, intensifying the structural rearrangements, which was also synergistic with the crosslinking strategy. Based on the advantages of improving drug release performance, the esterase-responsive strategy was considered a promising candidate for enhancing late release performance. Meanwhile, it is believed that such responsive modulation (crosslinking, esterase-responsive) in the π-π stacking region will become highly promising for subsequent research. Finally, the biosafety of 95.81% at 400 mg L-1 and drug cytotoxicity of IC50 ≈ 2.5 mg L-1 of PHB-EDE@CPT were also validated, confirming the broad application prospects of PHB-based crosslinked micelles.
Collapse
Affiliation(s)
- Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Gongcui Pei
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Baihao Huang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianchang Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Wang X, Song Y, Yu L, Xue X, Pang M, Li Y, Luo X, Hua Z, Lu C, Lu A, Liu Y. Co-Delivery of Hesperetin and Cisplatin via Hyaluronic Acid-Modified Liposome for Targeted Inhibition of Aggression and Metastasis of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34360-34377. [PMID: 37432741 DOI: 10.1021/acsami.3c03233] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Having no specific therapy for triple-negative breast cancer (TNBC), this subtype has the lowest survival rate and highest metastatic risk of breast cancer since the tumor inflammatory microenvironment mainly accounts for heterogeneity-induced insensitivity to chemotherapy and epithelial-mesenchymal transition (EMT). This study reports hyaluronic acid (HA)-modified liposomes loaded with cisplatin (CDDP) and hesperetin (Hes) (CDDP-HA-Lip/Hes) for active targeting to relieve systematic toxicity and effective anti-tumor/anti-metastasis ability of TNBC. Our results revealed that HA modification promoted the cellular uptake of the synthesized CDDP-HA-Lip/Hes nanoparticles in MDA-MB-231 cells and accumulation in tumor sites in vivo, indicating deeper tumor penetration. Importantly, CDDP-HA-Lip/Hes inhibited the PI3K/Akt/mTOR pathway to alleviate the inflammation in the tumor and with a crosstalk to suppress the process of the EMT, increasing the chemosensitivity and inhibiting tumor metastasis. Meanwhile, CDDP-HA-Lip/Hes could significantly inhibit the aggression and metastasis of TNBC with less side effects on normal tissues. Overall, this study provides a tumor-targeting drug delivery system with great potential for treating TNBC and its lung metastasis robustly.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|