1
|
Wu J, Yin G, Liu J, Yu ZZ, Li X. Multifunctional solar-driven interfacial evaporation system for simultaneous clean water production and high-value-added ion extraction. MATERIALS HORIZONS 2025. [PMID: 39967498 DOI: 10.1039/d4mh01857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The utilization of solar-driven interfacial evaporation (SIE) technology for clean water production has rapidly expanded, driven by global clean water scarcity and the energy crisis. Recent developments have demonstrated that combining SIE technology with the ion extraction process enables the effective use of abundant sunlight to economically and sustainably harvest high-value minerals from the ocean while simultaneously producing clean water. This synergy not only maximizes resource recovery but also enhances the ecological and economic benefits of solar energy utilization. In this review, we provide a comprehensive overview of the materials and methodologies used in designing multifunctional SIE systems for simultaneous clean water production and high-value ion extraction. The design rationale behind these multifunctional SIE systems, along with various ion extraction strategies and mechanisms, has been thoroughly discussed, identifying both the prevailing challenges and the potential research opportunities in this evolving field. This review aims to highlight the significant potential of SIE technology not only in enhancing clean water availability but also in contributing to sustainable energy and resource management.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guang Yin
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ji Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- School of Chemistry, Trinity College Dublin, D2, Dublin, Ireland
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaofeng Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Lu J, Feng Q, Wang J, Li J, Tan S, Xu Z. Efficient solar-driven crude oil cleanup via graphene/cellulose aerogel with radial and centrosymmetric design. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135418. [PMID: 39098201 DOI: 10.1016/j.jhazmat.2024.135418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Frequent oil spills pose significant threats to ecosystems; therefore, strict requirements are needed for prompt remediation and reclamation of spilled oil. Influenced by the structure of coniferous trees and their water transport, this experiment used cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and methyltrimethoxysilane (MTMS) to prepare radially centrosymmetric aerogels. By utilizing the in-situ polycondensation reaction of MTMS, CNF, and PVA were connected, and the hydrophobicity and mechanical properties of the aerogel were greatly enhanced. Furthermore, the introduction of graphene oxide (GO), enshrouded within the cross-linked network, engenders heightened photo-thermal effects. The resultant composite aerogel exhibits expeditious oil absorption under solar irradiation and radial layered channel architecture, significantly curtailing the crude oil absorption timeframe (achieving a maximum absorption capacity of 51.7 g/g). Moreover, it demonstrates superior performance in rapidly and repeatedly adsorbing highly viscous crude oil, surpassing existing literature. Notably, continuous absorption of high-viscosity crude oil is achieved by integrating the composite aerogel with a peristaltic pump. This study offers a novel approach to the absorption and retrieval of high-viscosity crude oil, broadening the potential application horizons of CNF-based aerogels within environmental remediation.
Collapse
Affiliation(s)
- Jiarui Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Feng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinze Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiatian Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sicong Tan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Li R, Wu M, Ma H, Zhu Y, Zhang H, Chen Q, Zhang C, Wei Y. A Single Component, Single Layer Flexile Foam Evaporator with the Higher Efficiency for Water Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402016. [PMID: 38733109 DOI: 10.1002/adma.202402016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Indexed: 05/13/2024]
Abstract
One of the greenest and promising ways to solve the problem of freshwater crisis is surface solar steam generation from seawater. A great number of photothermal materials with multi-component and multi-layered delicate yet complex structures often suffer from either low evaporation rate or high energy loss. Here, this work presents a single component foam evaporator with steam generation rate of up to 4.32 kg m-2 h-1 under 1 sun irradiation. The evaporator is constructed from an aniline oligomer as a single light-absorbing component, covalent linked with polyethylene glycol to form a monolithic polymer foam. Floating on the seawater, the foam has absorbance of 99.5% over the entire solar spectral range and low thermal conductivity (0.0077 W K-1m-1) that effectively retains heat in the material and at the interface. After 3 months of continuous outdoor natural sunlight irradiation, the evaporator maintains a stable and durable evaporation rate. Moreover, the materials have good mechanical properties (7.48 MPa young's modulus and 57.38% elongation at break) and excellent chemical resistance in 10 common organic solvents and aqueous solutions of pH = 1 to 14. This study provides a new system and strategy for desalination, steam power generation, treatment of polluted water and sewage, etc.
Collapse
Affiliation(s)
- Ruoxin Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Mingrui Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Haijun Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Yongqi Zhu
- Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongyi Zhang
- Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiaomei Chen
- Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- School of Materials Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taiwan, Taoyuan, 32023, China
| |
Collapse
|
4
|
Zhou J, Xiao Y, Liu S, Zhang S, Li Z, Zhao C, Li L, Feng J. Research progress on polybenzoxazine aerogels: Preparation, properties, composites and hybrids fabrication, applications. Adv Colloid Interface Sci 2024; 329:103185. [PMID: 38772148 DOI: 10.1016/j.cis.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/20/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The unremitting pursuit of high-performance and multifunctional materials has consistently propelled modern industries forward, stimulating research and motivating progress in related fields. In such materials, polybenzoxazine (PBz) aerogel, which combines the virtues of PBz and aerogel, has attracted salient attention recently, emerging as a novel research focus in the realm of advanced materials. In this review, the preparation scheme, microscopic morphology, and fundamental characteristics of PBz aerogels are comprehensively summarized and discussed in anticipation of providing a clear understanding of the correlation between preparation process, structure, and properties. The effective strategies for enhancing the performance of PBz aerogels including composite fabrication and hybridization are highlighted. Moreover, the applications of PBz-based aerogels in various domains such as adsorption (including wastewater treatment, CO2 capture, and microwave adsorption), thermal insulation, energy storage as well as sensors are covered in detail. Furthermore, several obstacles and potential directions for subsequent research are delineated with a view to surmounting the prevailing constraints and achieving a realization of the shift from experimental exploration to practical applications.
Collapse
Affiliation(s)
- Jinlong Zhou
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China
| | - Yunyun Xiao
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Nanchang 330013, PR China.
| | - Saihui Liu
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China
| | - Sizhao Zhang
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Nanchang 330013, PR China
| | - Zhengquan Li
- International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Nanchang 330013, PR China
| | - Chunxia Zhao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, PR China
| | - Liangjun Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, PR China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, PR China.
| |
Collapse
|
5
|
Zhao D, Ding M, Lin T, Duan Z, Wei R, Feng P, Yu J, Liu C, Li C. Gradient Graphene Spiral Sponges for Efficient Solar Evaporation and Zero Liquid Discharge Desalination with Directional Salt Crystallization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400310. [PMID: 38489751 PMCID: PMC11165548 DOI: 10.1002/advs.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Solar desalination is a promising strategy to utilize solar energy to purify saline water. However, the accumulation of salt on the solar evaporator surface severely reduces light absorption and evaporation performance. Herein, a simple and eco-friendly method to fabricate a 3D gradient graphene spiral sponge (GGS sponge) is presented that enables high-rate solar evaporation and zero liquid discharge (ZLD) desalination of high-salinity brine. The spiral structure of the GGS sponge enhances energy recovery, while the gradient network structures facilitate radial brine transport and directional salt crystallization, which cooperate to endow the sponge with superior solar evaporation (6.5 kg m-2 h-1 for 20 wt.% brine), efficient salt collection (1.5 kg m-2 h-1 for 20 wt.% brine), ZLD desalination, and long-term durability (continuous 144 h in 20 wt.% brine). Moreover, the GGS sponge shows an ultrahigh freshwater production rate of 3.1 kg m-2 h-1 during the outdoor desalination tests. A continuous desalination-irrigation system based on the GGS sponge for crop growth, which has the potential for self-sustainable agriculture in remote areas is demonstrated. This work introduces a novel evaporator design and also provides insight into the structural principles for designing next-generation solar desalination devices that are salt-tolerant and highly efficient.
Collapse
Affiliation(s)
- Demin Zhao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Meichun Ding
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Tianhao Lin
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Zhenying Duan
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Rui Wei
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Panpan Feng
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Jiahui Yu
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Chen‐Yang Liu
- CAS Key Laboratory of Engineering PlasticsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistrythe Chinese Academy of SciencesBeijing100190China
| | - Chenwei Li
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
- Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| |
Collapse
|
6
|
Zhou C, Mei Q, Huang L, Mao T, Li S, Wang Z, Wan H, Gu H, Han K. Flexible Janus Black Silicon Photothermal Conversion Membranes for Highly Efficient Solar-Driven Interfacial Water Purification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26153-26166. [PMID: 38718343 DOI: 10.1021/acsami.4c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Photothermal conversion materials are critical in the development of solar-driven interfacial evaporation techniques; however, achieving a high energy conversion efficiency remains challenging owing to the high cost and instability of light-absorbing materials, in addition to the difficulties of simultaneously improving light absorption while suppressing heat loss. A black silicon (Si) powder with a porous structure was prepared by chemical etching of a low-cost commercial micron-sized Al-Si alloy, and a flexible Janus black Si photothermal conversion membrane was constructed. The partially broken spherical particles and porous structure obtained after etching enhanced the refraction of light from the Si powder, imparting the prepared membrane with an average light absorption rate of 95.95% over the solar spectrum. Evaporation from the membrane increased the intermediate water content and reduced the equivalent evaporation enthalpy. The thermal conduction loss was inhibited through a one-dimensional water transport structure, and the membrane achieved a water evaporation rate of 2.17 kg m-2 h-1 and a photothermal efficiency of 94.95% under 1 sun illumination. Benefiting from the broadband absorption and high photothermal efficiency of black Si powder, surface modification of hydrophobic polydimethylsiloxane, and directional salt-out structure design, the evaporation rate of the Janus black Si membrane-based system in a 10% NaCl solution was maintained >2.10 kg m-2 h-1 after 7 days of continuous evaporation cycles. The removal rate of metal ions from simulated seawater and from practical wastewater containing complex heavy metals reached >99.9%, indicating the promising potential of black Si membrane for application in solar-driven interfacial water purification.
Collapse
Affiliation(s)
- Chuanling Zhou
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qiuyu Mei
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Limingming Huang
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Tingting Mao
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shuangfu Li
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhian Wang
- China CEC Engineering Corporation, Changsha 410116, P. R. China
| | - Hua Wan
- China CEC Engineering Corporation, Changsha 410116, P. R. China
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Kai Han
- State Key Laboratory for Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
7
|
Ding M, Zhao D, Wei R, Duan Z, Zhao Y, Li Z, Lin T, Li C. Multifunctional elastomeric composites based on 3D graphene porous materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230057. [PMID: 38855621 PMCID: PMC11022621 DOI: 10.1002/exp.20230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/25/2023] [Indexed: 06/11/2024]
Abstract
3D graphene porous materials (3GPM), which have low density, large porosity, excellent compressibility, high conductivity, hold huge promise for a wide range of applications. Nevertheless, most 3GPM have brittle and weak network structures, which limits their widespread use. Therefore, the preparation of a robust and elastic graphene porous network is critical for the functionalization of 3GPM. Herein, the recent research of 3GPM with excellent mechanical properties are summarized and the focus is on the effect factors that affect the mechanical properties of 3GPM. Moreover, the applications of elastic 3GPM in various fields, such as adsorption, energy storage, solar steam generation, sensors, flexible electronics, and electromagnetic wave shielding are comprehensively reviewed. At last, the new challenges and perspective for fabrication and functionalization of robust and elastic 3GPM are outlined. It is expected that the perspective will inspire more new ideas in preparation and functionalization of 3GPM.
Collapse
Affiliation(s)
- Meichun Ding
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Demin Zhao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Rui Wei
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zhenying Duan
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yuxi Zhao
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Aix Marseille Univ, CNRSInstitut de Chimie Radicalaire (ICR)MarseilleFrance
| | - Zeyang Li
- School of The Queen's University of Belfast Joint CollegeChina Medical UniversityShenyangChina
| | - Tianhao Lin
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Chenwei Li
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
8
|
Gao C, Li Y, Lan L, Wang Q, Zhou B, Chen Y, Li J, Guo J, Mao J. Bioinspired Asymmetric Polypyrrole Membranes with Enhanced Photothermal Conversion for Highly Efficient Solar Evaporation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306833. [PMID: 38044320 PMCID: PMC10853741 DOI: 10.1002/advs.202306833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Indexed: 12/05/2023]
Abstract
Solar-driven interfacial evaporation (SDIE) has attracted great attention by offering a zero-carbon-emission solution for clean water production. The manipulation of the surface structure of the evaporator markedly promotes the enhancement of light capture and the improvement of evaporation performance. Herein, inspired by seedless lotus pod, a flexible pristine polypyrrole (PPy) membrane with macro/micro-bubble and nanotube asymmetric structure is fabricated through template-assisted interfacial polymerization. The macro- and micro-hierarchical structure of the open bubbles enable multiple reflections inner and among the bubble cavities for enhanced light trapping and omnidirectional photothermal conversion. In addition, the multilevel structure (macro/micro/nano) of the asymmetric PPy (PPy-A) membrane induces water evaporation in the form of clusters, leading to a reduction of water evaporation enthalpy. The PPy-A membranes achieve a full-spectrum light absorption of 96.3% and high evaporation rate of 2.03 kg m-2 h-1 under 1 sun. Long-term stable desalination is also verified with PPy-A membranes by applying one-way water channel. This study demonstrates the feasibility of pristine PPy membranes in SDIE applications, providing guidelines for modulation of the evaporator topologies toward high-efficient solar evaporation.
Collapse
Affiliation(s)
- Can Gao
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
| | - Yimeng Li
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and TechnologyDonghua UniversityShanghai201620China
| | - Lizhen Lan
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and TechnologyDonghua UniversityShanghai201620China
| | - Qing Wang
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
| | - Buguang Zhou
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
| | - Yue Chen
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
| | - Jiecong Li
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
| | - Jiansheng Guo
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
| | - Jifu Mao
- Key Laboratory of Textile Science and TechnologyMinistry of EducationDonghua UniversityShanghai201620China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and TechnologyDonghua UniversityShanghai201620China
- Shanghai Frontiers Science Center of Advanced TextilesDonghua UniversityShanghai201620China
| |
Collapse
|
9
|
Li N, Shao K, He J, Wang S, Li S, Wu X, Li J, Guo C, Yu L, Murto P, Chen J, Xu X. Solar-Powered Interfacial Evaporation and Deicing Based on a 3D-Printed Multiscale Hierarchical Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301474. [PMID: 37086141 DOI: 10.1002/smll.202301474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m-2 h-1 in calm air and 25.3 kg m-2 h-1 at a gentle breeze of 2 m s-1 are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.
Collapse
Affiliation(s)
- Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Ke Shao
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Jintao He
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shuai Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaochun Wu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Cui Guo
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
10
|
He Y, Cai J, Xu Y, Luo B, Liu M. Chitin nanocrystals scaffold by directional freezing for high-efficiency water purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|