1
|
Liu L, Guo X, Zhang D, Ma R. Thermogalvanic hydrogels for low-grade heat harvesting and health monitoring. MATERIALS HORIZONS 2025. [PMID: 40351014 DOI: 10.1039/d4mh01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Direct conversion of ubiquitous heat energy into electricity is crucial for the development of green and sustainable power sources and self-powered electronic devices. Compared with traditional semiconductor thermoelectric materials, emerging thermogalvanic hydrogels offer high thermopowers, excellent intrinsic flexibilities, and low manufacturing costs, making them highly promising for low-grade thermal energy harvesting, self-powered flexible electronics, and wearable health monitoring devices. This review summarizes the recent advancements in thermogalvanic hydrogels, focusing on the strategies employed to enhance their thermoelectric properties and mechanical performances and expand their operational temperature ranges. We also explore their potential applications in low-grade heat harvesting for powering electronic devices and wearable applications. This review will provide valuable insights and guidance for the development and application of high-performance thermogalvanic hydrogels by systematically analyzing the potential of thermogalvanic hydrogels for flexible energy supply systems, outlining the performance enhancement mechanisms, and further discussing the current challenges and opportunities.
Collapse
Affiliation(s)
- Lili Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China.
| | - Xin Guo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China.
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China.
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China.
| |
Collapse
|
2
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Shiveshwarkar P, Nelson AD, Nguyen MT, Jaworski J. Assessing Wear Characteristics of Sprayable, Diacetylene-Containing Sensor Formulations. SENSORS (BASEL, SWITZERLAND) 2024; 24:6925. [PMID: 39517822 PMCID: PMC11548148 DOI: 10.3390/s24216925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
This work extends recent developments in diacetylene-based, sprayable sensors by identification and assessment of formulations which facilitate their use for wearable sensing. Diacetylene-based spray-on sensors have the potential to be a widely deployed sensing technology, as they require no power and can be applied as thin coatings onto surfaces to provide a colorimetric response to target exposure. In responding to radiation, liquid-phase targets, or gas-phase targets specifically determined by the formulation of the sprayable sensor used, this technology is amenable to wearable sensors for measuring exposure to different environmental risks. Here, we provide the means to improve wear resistance, reduce false-positive signals due to wetting, and enhance color fastness for coatings of sprayable, diacetylene-based sensor formulations on cotton fabric. These sensor formulations possess polymethyl methacrylate (PMMA), which enhances the coating stability to only 8% color loss due to wear compared to 18-25% without PMMA, while maintaining the inherent ability of diacetylene-component formulations to detect radiation as well as gas or liquid phase analytes. This represents a significant step toward the use of diacetylene-based sensing formulations for wearable sensing. In the future, the form of spray-on sensor materials demonstrated here may find use in wearable sensing applications for detection of cumulative exposure to UV radiation, hydrogen peroxide vapors, or solvent exposure. We expect trends toward applications toward other wearable sensors for environmental monitoring given the well-known customizability in target response of diacetylene-containing monomers by modifying their headgroup chemistry.
Collapse
Affiliation(s)
| | | | | | - Justyn Jaworski
- Department of Bioengineering, The University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, USA; (P.S.); (A.D.N.); (M.T.N.)
| |
Collapse
|
4
|
Zhu S, Tian G, He X, Shi Y, Liu WD, Li Z, Wang Y, Li J, Shi Y, Song Y, Wang L. A Highly Robust, Multifunctional, and Breathable Bicomponent Fibers Thermoelectric Fabric for Dual-Mode Sensing. ACS Sens 2024; 9:5520-5530. [PMID: 39300913 DOI: 10.1021/acssensors.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Wearable thermoelectric (TE) materials are seen as excellent candidates for flexible electronics because of their unique self-powered properties, multistimulus sensing and human waste heat conversion. However, currently reported flexible TE materials still face challenges such as poor durability, uncomfortable wearing and sensing signals crosstalking each other. Herein, this study describes a hot-air cross-linking method for the preparation of multifunctional TE fabrics with enhanced durability. Poly(ethylene terephthalate) (PET) fibers with core and sheath structures having different melting points were selected as flexible substrates. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and single-walled carbon nanotubes (SWCNTs) were embedded stably on the surface of the sheath layer in the presence of heat treatment. The fiber-welded structure created by thermal cross-linking improves the durability of TE fabrics, including consistent mechanical and electrical properties after a 6 h wash test and 6000 compression cycles. The unique fiber structure of TE fabrics ensures excellent breathability (313.7 mm s-1 at 200 Pa), which meets the breathability requirements for human wear. In addition, the fiber-prepared sensors have excellent compressive strain response (20 ms response time and 30 ms recovery time) and precise temperature discrimination (0.17 K minimum discrimination temperature) for accurate real-time monitoring of the sensed signals. Thus, the TE fabrics can be used for human motion recognition, including pulse monitoring, sign language expression, and motions in joint areas. Moreover, the fabricated wearable TE device is connected to a Bluetooth module for wireless transmission, which can be used for mechanical and temperature sensing of the robot arm without signals crosstalking. This new durable TE fabric paves the way for the next generation of smart wearable technology.
Collapse
Affiliation(s)
- Suiyuan Zhu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Guangliang Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinyang He
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 Singapore
| | - Yunhe Shi
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wen-Di Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhen Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yao Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 Singapore
| | - Jiajia Li
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yihan Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yu Song
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liming Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Miao L, Zhu S, Liu C, Gao J, Zhang Z, Peng Y, Chen JL, Gao Y, Liang J, Mori T. Comfortable wearable thermoelectric generator with high output power. Nat Commun 2024; 15:8516. [PMID: 39353932 PMCID: PMC11445405 DOI: 10.1038/s41467-024-52841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Wearable thermoelectric generators provide a reliable power generation method for self-powered wearable electronic devices. However, there has been a lack of research regarding the comfort of wearable thermoelectric generators. Here we propose a design for a comfortable wearable thermoelectric generators system with high output power based on sandwiched thermoelectric model. This model paves the way for simultaneously optimizing comfort (skin temperature and pressure perception) and output power by systematically considering a variety of thermal resistive environments and bending states, the properties of the thermoelectric and encapsulation materials, and the device structure. To verify this strategy, we fabricate wearable thermoelectric generators using Mg-based thermoelectric materials. These materials have great potential for replacing traditional Bi2Te3-based materials and enable our wearable thermoelectric generators with a power density of 18.4 μWcm-2 under a wearing pressure of 0.8 kPa and with a skin temperature of 33 °C, ensuring the wearer's comfort.
Collapse
Affiliation(s)
- Lei Miao
- Guangxi Key Laboratory for Relativity Astrophysics, Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, P. R. China.
| | - Sijing Zhu
- Guangxi Key Laboratory for Relativity Astrophysics, Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, P. R. China
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, P. R. China
| | - Chengyan Liu
- Guangxi Key Laboratory of Information Materials, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, Guilin, P. R. China
| | - Jie Gao
- Guangxi Key Laboratory of Information Materials, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, Guilin, P. R. China
| | - Zhongwei Zhang
- Guangxi Key Laboratory for Relativity Astrophysics, Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, P. R. China
| | - Ying Peng
- Guilin University of Electronic Technology, Guilin, P. R. China
| | - Jun-Liang Chen
- Guangxi Key Laboratory of Information Materials, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, Guilin, P. R. China
| | - Yangfan Gao
- Guangxi Key Laboratory of Information Materials, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, Guilin, P. R. China
| | - Jisheng Liang
- Guangxi Key Laboratory for Relativity Astrophysics, Guangxi Novel Battery Materials Research Center of Engineering Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, P. R. China
| | - Takao Mori
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
6
|
Shi XL, Wang L, Lyu W, Cao T, Chen W, Hu B, Chen ZG. Advancing flexible thermoelectrics for integrated electronics. Chem Soc Rev 2024; 53:9254-9305. [PMID: 39143899 DOI: 10.1039/d4cs00361f] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
With the increasing demand for energy and the climate challenges caused by the consumption of traditional fuels, there is an urgent need to accelerate the adoption of green and sustainable energy conversion and storage technologies. The integration of flexible thermoelectrics with other various energy conversion technologies plays a crucial role, enabling the conversion of multiple forms of energy such as temperature differentials, solar energy, mechanical force, and humidity into electricity. The development of these technologies lays the foundation for sustainable power solutions and promotes research progress in energy conversion. Given the complexity and rapid development of this field, this review provides a detailed overview of the progress of multifunctional integrated energy conversion and storage technologies based on thermoelectric conversion. The focus is on improving material performance, optimizing the design of integrated device structures, and achieving device flexibility to expand their application scenarios, particularly the integration and multi-functionalization of wearable energy conversion technologies. Additionally, we discuss the current development bottlenecks and future directions to facilitate the continuous advancement of this field.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Lijun Wang
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Wanyu Lyu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Tianyi Cao
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Wenyi Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Boxuan Hu
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
7
|
Xu L, Yin Z, Xiao Y, Zhao LD. Interstitials in Thermoelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406009. [PMID: 38814637 DOI: 10.1002/adma.202406009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Defect structure is pivotal in advancing thermoelectric performance with interstitials being widely recognized for their remarkable roles in optimizing both phonon and electron transport properties. Diverse interstitial atoms are identified in previous works according to their distinct roles and can be classified into rattling interstitial, decoupling interstitial, interlayer interstitial, dynamic interstitial, and liquid interstitial. Specifically, rattling interstitial can cause phonon resonance in cage compound to scatter phonon transport; decoupling interstitial can contribute to phonon blocking and electron transport due to their significantly different mean free paths; interlayer interstitial can facilitate out-of-layer electron transport in layered compounds; dynamic interstitial can tune temperature-dependent carrier density and optimize electrical transport properties at wide temperatures; liquid interstitial could improve the carrier mobility at homogeneous dispersion state. All of these interstitials have positive impact on thermoelectric performance by adjusting transport parameters. This perspective therefore intends to provide a thorough overview of advances in interstitial strategy and highlight their significance for optimizing thermoelectric parameters. Finally, the profound potential for extending interstitial strategy to various other thermoelectric systems is discussed and some future directions in thermoelectric material are also outlined.
Collapse
Affiliation(s)
- Liqing Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanxiang Yin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Xiao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Yuhang District, Hangzhou, 311115, China
| |
Collapse
|
8
|
Sattar M, Lee YJ, Kim H, Adams M, Guess M, Kim J, Soltis I, Kang T, Kim H, Lee J, Kim H, Yee S, Yeo WH. Flexible Thermoelectric Wearable Architecture for Wireless Continuous Physiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37401-37417. [PMID: 38981010 DOI: 10.1021/acsami.4c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Continuous monitoring of physiological signals from the human body is critical in health monitoring, disease diagnosis, and therapeutics. Despite the needs, the existing wearable medical devices rely on either bulky wired systems or battery-powered devices needing frequent recharging. Here, we introduce a wearable, self-powered, thermoelectric flexible system architecture for wireless portable monitoring of physiological signals without recharging batteries. This system harvests an exceptionally high open circuit voltage of 175-180 mV from the human body, powering the wireless wearable bioelectronics to detect electrophysiological signals on the skin continuously. The thermoelectric system shows long-term stability in performance for 7 days with stable power management. Integrating screen printing, laser micromachining, and soft packaging technologies enables a multilayered, soft, wearable device to be mounted on any body part. The demonstration of the self-sustainable wearable system for detecting electromyograms and electrocardiograms captures the potential of the platform technology to offer various opportunities for continuous monitoring of biosignals, remote health monitoring, and automated disease diagnosis.
Collapse
Affiliation(s)
- Maria Sattar
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yoon Jae Lee
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Electrical and Computer Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyeonseok Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael Adams
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew Guess
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhyeon Kim
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ira Soltis
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Taewoog Kang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jimin Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hodam Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shannon Yee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wearable Intelligent Systems and Healthcare Center (WISH Center) at Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Xiao R, Zhou X, Zhang C, Liu X, Han S, Che C. Organic Thermoelectric Materials for Wearable Electronic Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:4600. [PMID: 39065999 PMCID: PMC11280558 DOI: 10.3390/s24144600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Wearable electronic devices have emerged as a pivotal technology in healthcare and artificial intelligence robots. Among the materials that are employed in wearable electronic devices, organic thermoelectric materials possess great application potential due to their advantages such as flexibility, easy processing ability, no working noise, being self-powered, applicable in a wide range of scenarios, etc. However, compared with classic conductive materials and inorganic thermoelectric materials, the research on organic thermoelectric materials is still insufficient. In order to improve our understanding of the potential of organic thermoelectric materials in wearable electronic devices, this paper reviews the types of organic thermoelectric materials and composites, their assembly strategies, and their potential applications in wearable electronic devices. This review aims to guide new researchers and offer strategic insights into wearable electronic device development.
Collapse
Affiliation(s)
- Runfeng Xiao
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xiaoyan Zhou
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317700, China;
| | - Chan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xi Liu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Shaobo Han
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Canyan Che
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
10
|
Chang Y, Huang YH, Lin PS, Hong SH, Tung SH, Liu CL. Enhanced Electrical Conductivity and Mechanical Properties of Stretchable Thermoelectric Generators Formed by Doped Semiconducting Polymer/Elastomer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3764-3777. [PMID: 38226590 DOI: 10.1021/acsami.3c15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Recent research efforts have concentrated on the development of flexible and stretchable thermoelectric (TE) materials. However, significant challenges have emerged, including increased resistance and reduced electrical conductivity when subjected to strain. To address these issues, rigid semiconducting polymers and elastic insulating polymers have been incorporated and nanoconfinement effects have been exploited to enhance the charge mobility. Herein, a feasible approach is presented for fabricating stretchable TE materials by using a doped semiconducting polymer blend consisting of either poly(3-hexylthiophene) (P3HT) or poly(3,6-dithiophen-2-yl-2,5-di(2-decyltetradecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thienylenevinylene-2,5-yl) (PDVT-10) as the rigid polymer with styrene-ethylene-butylene-styrene (SEBS) as the elastic polymer. In particular, the blend composition is optimized to achieve a continuous network structure with SEBS, thereby improving the stretchability. The optimized polymer films exhibit well-ordered microstructural aggregates, indicative of good miscibility with FeCl3 and enhanced doping efficiency. Notably, a lower activation energy and higher charge-carrier concentration contribute to an improved electrical conductivity under high tensile strain, with a maximum output power of 1.39 nW at a ΔT of 22.4 K. These findings offer valuable insights and serve as guidelines for the development of stretchable p-n junction thermoelectric generators based on doped semiconducting polymer blends with potential applications in wearable electronics and energy harvesting.
Collapse
Affiliation(s)
- Yun Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hsuan Huang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Shen Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|