1
|
Tran DT, Tran PKL, Malhotra D, Nguyen TH, Nguyen TTA, Duong NTA, Kim NH, Lee JH. Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective. NANO CONVERGENCE 2025; 12:9. [PMID: 39915370 PMCID: PMC11802996 DOI: 10.1186/s40580-024-00468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
The conversion of electricity into hydrogen (H2) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H2 production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H2 production as utilized by relevant global companies.
Collapse
Affiliation(s)
- Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Phan Khanh Linh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Deepanshu Malhotra
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Thanh Hai Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Tran Thien An Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nguyen Tram Anh Duong
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
2
|
Zhou H, Li P, Zhong T, Teng Y, Li S, Luo X, Wang X, Yang M, Deng G. Defect Passivation of Mn 2+-Doped CsPbX 3(X=Cl,Br) Perovskite Nanocrystals as Electrocatalyst for Overall Water Splitting. Chem Asian J 2024; 19:e202400798. [PMID: 39344932 DOI: 10.1002/asia.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Mn doping has been used to improve the physical chemistry of lead halide perovskite nanocrystals such as CsPbX3, where X is a halogen ion. In this paper, a two-phase method for Mn-doped CsPbX3 nanosheets (where X=Br, Cl), namely water-hexane system, is reported. Compared to conventional catalyst arrays, the band gap of CsPbBr3 nanocrystalline is easily tuned, the carrier diffusion distance is remote, the band edge position of the band structure is favorable for a wide range of electrocatalytic redox reactions, and the catalytic active site is maximally exposed, providing a larger electrolyte contact area. The porous hierarchical structure also accelerates the release of hydrogen bubbles. The results showed that the optimized Mn : CsPbBr3 catalyst exhibited excellent electrolytic performance of aquatic hydrogen in alkaline electrolyte (1 mol/L KOH). The overpotentials of the oxygen evolution reaction (OER) at the current densities of 10 and 100 mA cm-2 are only 114.4 and 505.4 mV, respectively, with a Tafel slope of 43 mV dec-1. At a current density of 10 mA cm-2, the excess potential required for the hydrogen evolution reaction (HER) is 158.6 mV and it exhibits excellent electrochemical stability. The Mn : CsPbBr3 nanocrystalline consists of two electrodes for hydrolysis of water, requiring only a voltage of 1.45 V. This provides implications for the optimization of electrocatalysts in alkaline electrolytes with the aim of developing next generation 2D electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Haiyun Zhou
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Pingping Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Tingting Zhong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Yunzhen Teng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Siqi Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Xiaofeng Luo
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Xinning Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Min Yang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| |
Collapse
|
3
|
Gao T, An Q, Tang X, Yue Q, Zhang Y, Li B, Li P, Jin Z. Recent progress in energy-saving electrocatalytic hydrogen production via regulating the anodic oxidation reaction. Phys Chem Chem Phys 2024; 26:19606-19624. [PMID: 39011574 DOI: 10.1039/d4cp01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen energy with its advantages of high calorific value, renewable nature, and zero carbon emissions is considered an ideal candidate for clean energy in the future. The electrochemical decomposition of water, powered by renewable and clean energy sources, presents a sustainable and environmentally friendly approach to hydrogen production. However, the traditional electrochemical overall water-splitting reaction (OWSR) is limited by the anodic oxygen evolution reaction (OER) with sluggish kinetics. Although important advances have been made in efficient OER catalysts, the theoretical thermodynamic difficulty predetermines the inevitable large potential (1.23 V vs. RHE for the OER) and high energy consumption for the conventional water electrolysis to obtain H2. Besides, the generation of reactive oxygen species at high oxidation potentials can lead to equipment degradation and increase maintenance costs. Therefore, to address these challenges, thermodynamically favorable anodic oxidation reactions with lower oxidation potentials than the OER are used to couple with the cathodic hydrogen evolution reaction (HER) to construct new coupling hydrogen production systems. Meanwhile, a series of robust catalysts applied in these new coupled systems are exploited to improve the energy conversion efficiency of hydrogen production. Besides, the electrochemical neutralization energy (ENE) of the asymmetric electrolytes with a pH gradient can further promote the decrease in application voltage and energy consumption for hydrogen production. In this review, we aim to provide an overview of the advancements in electrochemical hydrogen production strategies with low energy consumption, including (1) the traditional electrochemical overall water splitting reaction (OWSR, HER-OER); (2) the small molecule sacrificial agent oxidation reaction (SAOR) and (3) the electrochemical oxidation synthesis reaction (EOSR) coupling with the HER (HER-SAOR, HER-EOSR), respectively; (4) regulating the pH gradient of the cathodic and anodic electrolytes. The operating principle, advantages, and the latest progress of these hydrogen production systems are analyzed in detail. In particular, the recent progress in the catalytic materials applied to these coupled systems and the corresponding catalytic mechanism are further discussed. Furthermore, we also provide a perspective on the potential challenges and future directions to foster advancements in electrocatalytic green sustainable hydrogen production.
Collapse
Affiliation(s)
- Taotao Gao
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qi An
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiangmin Tang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qu Yue
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yang Zhang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Bing Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
4
|
Hou JJ, Liu H, Wang T, Tian BQ, Yang Y, Zhang XM. Surface defect-engineered Fe doping in layered Co-based complex as highly efficient bifunctional electrocatalysts for overall water splitting. Dalton Trans 2024; 53:1245-1252. [PMID: 38112081 DOI: 10.1039/d3dt03486k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The electrocatalytic splitting of water to produce hydrogen is regarded as an efficient and promising strategy but is limited by its large overpotential; thus, a highly efficient electrocatalyst is urgently needed. Mixed metal doping is an important strategy in defect engineering because the heteroatoms can change the intrinsic structure to form defects by affecting the atomic coordination mode and adjusting the electronic structure, which is often accompanied by morphological changes. Herein, two-dimensional layered bimetallic Co-pydc containing axially coordinated water molecules was selected by producing surface defects through Fe doping in Co centers as bifunctional electrocatalysts for OER and HER. The optimized Co0.59Fe0.41-pydc possesses outstanding OER performance with the lowest overpotential of 262 mV to reach j = 10 mA cm-2, and Co0.75Fe0.25-pydc possesses superior HER performance with the lowest overpotential of 96 mV at j = 10 mA cm-2. Furthermore, the overall water splitting device assembled with Co0.59Fe0.41-pydc@NF//Co0.59Fe0.41-pydc@NF affords a current density of 10 mA cm-2 at only 1.687 V. This work emphasizes the surface defects formed by tuning the electronic structure of metal centres accompanied with morphological changes of bimetallic dopants for efficient overall water splitting.
Collapse
Affiliation(s)
- Juan-Juan Hou
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Huan Liu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Ting Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Bao-Qiang Tian
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Yang Yang
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| |
Collapse
|
5
|
Zou Y, Jin M, Zhu D, Tang YJ. Surface Adsorption of Amorphous Phosphate on RuNi-Doped Molybdate for the Hydrogen Evolution Reaction. Inorg Chem 2023; 62:15757-15765. [PMID: 37709672 DOI: 10.1021/acs.inorgchem.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Developing highly active and cost-effective electrocatalysts is critical for enhancing the intrinsic performance of electrocatalytic water splitting. Oxoanion-based compounds, such as phosphates and molybdates, have emerged as promising electrocatalysts owing to their advantageous properties of nontoxicity, low price, and strong water adsorption ability. However, their relatively inferior activity has impeded extensive investigation into electrochemical applications. Herein, an amorphous phosphate-adsorbed and RuNi-doped molybdate (RuNiMo-P) composite is synthesized on nickel foam (NF) support by using a simple two-step method. Significantly, an acidic solution of phosphomolybdic acid (PMo12), containing a low concentration of Ru, can etch the NF, contributing to the in situ growth of the RuNi-doped molybdate precursor. Subsequent phosphating ensures the surface formation of the amorphous phosphate layer due to abundant oxygen in the precursor. The strong structural interaction between RuNi-doped molybdate and amorphous phosphate in RuNiMo-P prompts an enhanced hydrogen evolution reaction (HER) performance, delivering an overpotential of 38 mV at a current density of -10 mA cm-2, a Tafel slope of 53 mV dec-1, and good stability in an alkaline medium. Characterizations after HER reveal that RuNi doping, partial dissolution of phosphate and molybdate species, and newly formed NiOOH nanosheets can expose active sites, facilitate charge transfer, and modify electronic structures, thereby improving the HER performance effectively.
Collapse
Affiliation(s)
- Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| | - Man Jin
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China
| |
Collapse
|
6
|
Meng G, Chang Z, Zhu L, Chen C, Chen Y, Tian H, Luo W, Sun W, Cui X, Shi J. Adsorption Site Regulations of [W-O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density. NANO-MICRO LETTERS 2023; 15:212. [PMID: 37707720 PMCID: PMC10501108 DOI: 10.1007/s40820-023-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
Hydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts, which are still challenging due to the totally different catalytic mechanisms. Herein, the [W-O] group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst, which possesses excellent catalytic performances towards both HER (185.60 mV at 1000 mA cm-2) and HzOR (78.99 mV at 10,00 mA cm-2) with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm-2. The introduction of [W-O] groups, working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation, leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in [W-O] group as well, resultantly boosting the hydrogen production and HzOR. Moreover, a proof-of-concept direct hydrazine fuel cell-powered H2 production system has been assembled, realizing H2 evolution at a rate of 3.53 mmol cm-2 h-1 at room temperature without external electricity supply.
Collapse
Affiliation(s)
- Ge Meng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ziwei Chang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Libo Zhu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chang Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yafeng Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Han Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Wenshu Luo
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenping Sun
- State Key Laboratory of Clean Energy Utilization, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiangzhi Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, People's Republic of China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|