1
|
Tian C, Wang D, Zhang KHL, Hofmann JP. Evaluating the Effect of Oxygen Vacancies on the Oxygen Evolution Reaction (OER) Activity of LaNiO 3. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8565-8573. [PMID: 40145897 DOI: 10.1021/acs.langmuir.4c04833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
In this work, we have investigated the effect of oxygen vacancies on the surface composition, electronic structure, and oxygen evolution reaction (OER) performance of LaNiO3. The results show that the OER performance of LaNiO3 can be improved both by decreasing the oxygen partial pressure during film growth and annealing the thin film in a H2 atmosphere. X-ray photoemission spectroscopy (XPS) shows a significant increase in the Ni:La ratio on the LaNiO3 surface after the introduction of oxygen defects, especially after H2 treatment, where the Ni:La ratio reaches 3.5:1. The presence of oxygen vacancies leads to the aggregation of Ni on the surface of LaNiO3, which plays a crucial role in enhancing the OER performance of LaNiO3. In addition, the OER activity of both LaNiO3 and oxygen vacancy rich LaNiO3 decreases upon cyclic voltammetry (CV) between 1.0 and 1.5 V versus the RHE with an increase in the cycle number. XPS results reveal that the CV treatments lead to a decrease in the Ni concentration at the LaNiO3 surface, which is an important factor for the decrease in the OER performance of LaNiO3 as well as oxygen vacancy rich LaNiO3.
Collapse
Affiliation(s)
- Chuanmu Tian
- Surface Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Danni Wang
- Surface Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Siming South Street 422, Xiamen 361005, P. R. China
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials- and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Mehravaran M, Asadpour-Zeynali K. Bifunctional electrocatalytic performance of MgAlCe-LDH/β-Ni(OH) 2/Ni foam in total natural seawater splitting. Heliyon 2025; 11:e42072. [PMID: 39911445 PMCID: PMC11795069 DOI: 10.1016/j.heliyon.2025.e42072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Electrocatalytic seawater splitting is a potential solution to environmental problems, as seawater is a plentiful supply of hydrogen sources in nature. Hence, the development of bifunctional electrodes exhibiting outstanding performance in both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is essential for the efficacy of total seawater splitting. Herein, we employed a straightforward method for in situ creation of β-Ni(OH)2 on Ni foam, followed by a hydrothermal approach to manufacture MgAlCe-LDH on β-Ni(OH)2/Ni foam. The linear sweep voltammetry (LSV) experiments demonstrate that the MgAlCe-LDH/β-Ni(OH)2/Ni foam exhibits superior performance for both the OER and the HER in a natural seawater electrolyte compared to the MgAlCe-LDH/Ni foam, β-Ni(OH)2/Ni foam, and Ni foam. Consequently, the MgAlCe-LDH/β-Ni(OH)2/Ni foam requires an 80 mV overpotential for OER and 337 mV for HER to attain a current density of 10 mA cm-2. The enhanced electrocatalytic activity of MgAlCe-LDH/β-Ni(OH)2/Ni foam can be attributed to boosting exposed active sites, improving electronic interaction, and increasing charge transfer capacity resulting from the synthesis of MgAlCe-LDH on β-Ni(OH)2/Ni foam. Implementing a two-electrode configuration for the MgAlCe-LDH/β-Ni(OH)2/Ni foam, the total seawater splitting investigation exhibits 1.42 V cell voltage at a current density of 10 mA cm-2 and 25 h long-term stability.
Collapse
Affiliation(s)
- Mahsa Mehravaran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Karim Asadpour-Zeynali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| |
Collapse
|
3
|
Liang Z, Shen D, Wei Y, Sun F, Xie Y, Wang L, Fu H. Modulating the Electronic Structure of Cobalt-Vanadium Bimetal Catalysts for High-Stable Anion Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408634. [PMID: 39148167 DOI: 10.1002/adma.202408634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.
Collapse
Affiliation(s)
- Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Di Shen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yao Wei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Fanfei Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
4
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Wu D, Chen Y, Bai Y, Zhu C, Zhang M. One-Dimensional La 0.2Sr 0.8Cu 0.4Co 0.6O 3-δ Nanostructures for Efficient Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:64. [PMID: 38202520 PMCID: PMC10781154 DOI: 10.3390/nano14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Producing oxygen and hydrogen via the electrolysis of water has the advantages of a simple operation, high efficiency, and environmental friendliness, making it the most promising hydrogen production method. In this study, La0.2Sr0.8Cu0.4Co0.6O3-δ (LSCC) nanofibers were prepared by electrospinning to utilize non-noble perovskite oxides instead of noble metal catalysts for the oxygen evolution reaction, and the performance and electrochemical properties of LSCC nanofibers synthesized at different firing temperatures were evaluated. In an alkaline environment (pH = 14, 6 M KOH), the nanofibers calcined at 650 °C showed an overpotential of 209 mV at a current density of 10 mA cm-2 as well as good long-term stability. Therefore, the prepared LSCC-650 NF catalyst shows excellent potential for electrocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Dongshuang Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yidan Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuelei Bai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Chuncheng Zhu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
6
|
Yang W, Li H, Li P, Xie L, Liu Y, Cao Z, Tian C, Wang CA, Xie Z. Facile Synthesis of Co Nanoparticles Embedded in N-Doped Carbon Nanotubes/Graphitic Nanosheets as Bifunctional Electrocatalysts for Electrocatalytic Water Splitting. Molecules 2023; 28:6709. [PMID: 37764484 PMCID: PMC10535278 DOI: 10.3390/molecules28186709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Developing robust and cost-effective electrocatalysts to boost hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) is crucially important to electrocatalytic water splitting. Herein, bifunctional electrocatalysts, by coupling Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets (Co@NCNTs/NG), were successfully synthesized via facile high-temperature pyrolysis and evaluated for water splitting. The morphology and particle size of products were influenced by the precursor type of the cobalt source (cobalt oxide or cobalt nitrate). The pyrolysis product prepared using cobalt oxide as a cobalt source (Co@NCNTs/NG-1) exhibited the smaller particle size and higher specific surface area than that of the pyrolysis products prepared using cobalt nitrate as a cobalt source (Co@NCNTs/NG-2). Notably, Co@NCNTs/NG-1 displayed much lower potential -0.222 V vs. RHE for HER and 1.547 V vs. RHE for OER at the benchmark current density of 10 mA cm-2 than that of Co@NCNTs/NG-2, which indicates the higher bifunctional catalytic activities of Co@NCNTs/NG-1. The water-splitting device using Co@NCNTs/NG-1 as both an anode and cathode demonstrated a potential of 1.92 V to attain 10 mA cm-2 with outstanding stability for 100 h. This work provides a facile pyrolysis strategy to explore highly efficient and stable bifunctional electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wei Yang
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Han Li
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Pengzhang Li
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Linhua Xie
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Yumin Liu
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Zhenbao Cao
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Chuanjin Tian
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Chang-An Wang
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhipeng Xie
- Institute of New Energy Materials and Devices, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|