1
|
Zhang S, Wang T, Gao T, Liao J, Wang Y, Xu M, Lu C, Liang J, Xu Z, Sun J, Xie Q, Lin Z, Han H. Imaging probes for the detection of brain microenvironment. Colloids Surf B Biointerfaces 2025; 252:114677. [PMID: 40215639 DOI: 10.1016/j.colsurfb.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 05/18/2025]
Abstract
The brain microenvironment (BME) is a highly dynamic system that plays a critical role in neural excitation, signal transmission, development, aging, and neurological disorders. BME consists of three key components: neural cells, extracellular spaces, and physical fields, which provide structures and physicochemical properties to synergistically and antagonistically regulate cell behaviors and functions such as nutrient transport, waste metabolism and intercellular communication. Consequently, monitoring the BME is vital to acquire a better understanding of the maintenance of neural homeostasis and the mechanisms underlying neurological diseases. In recent years, researchers have developed a range of imaging probes designed to detect changes in the microenvironment, enabling precise measurements of structural and biophysical parameters in the brain. This advancement aids in the development of improved diagnostic and therapeutic strategies for brain disorders and in the exploration of cutting-edge mechanisms in neuroscience. This review summarizes and highlights recent advances in the probes for sensing and imaging BME. Also, we discuss the design principles, types, applications, challenges, and future directions of probes.
Collapse
Affiliation(s)
- Shiming Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianyu Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianzi Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Jun Liao
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Meng Xu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Jianfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, Beijing 100096, PR China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Department of Radiology, Peking University Third Hospital, Beijing 100096, PR China.
| |
Collapse
|
2
|
Park E, He C, Abbasi AZ, Tian M, Huang S, Wang L, Georgiou J, Collingridge GL, Fraser PE, Henderson JT, Wu XY. Brain microenvironment-remodeling nanomedicine improves cerebral glucose metabolism, mitochondrial activity and synaptic function in a mouse model of Alzheimer's disease. Biomaterials 2025; 318:123142. [PMID: 39874644 DOI: 10.1016/j.biomaterials.2025.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated. To examine this, a transgenic mouse model of Alzheimer's disease (TgCRND8) in vivo were treated intravenously with beta-amyloid antibody-conjugated (Ab), blood-brain barrier-crossing terpolymer (TP) containing polymer-lipid based manganese dioxide nanoparticles (Ab-TP-MDNPs). Alterations in cerebral glucose utilization were determined by [1⁸F]FDG-PET imaging in vivo, with glucose metabolism and mitochondrial activity analyzed by biomarkers and studies with primary neurons in vitro. Synaptic function was evaluated by both biomarkers and electrophysiologic analysis. Current study shows that intravenously administered Ab-TP-MDNPs enhanced cerebral glucose utilization, improved glucose metabolism, mitochondrial activity, and increased the levels of neprilysin, O-glycosylation. The consequence of this was enhanced glucose and ATP availability, resulting in improved long-term potentiation for promoting neuronal synaptic function. This study highlights the importance of targeting the metabolism of complex disease pathologies in addressing disease-modifying therapeutics for neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Elliya Park
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Chunsheng He
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Azhar Z Abbasi
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Meng Tian
- 135 Nassau St, TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 1M8, Canada
| | - Shudi Huang
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Liting Wang
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - John Georgiou
- 600 University Ave, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Graham L Collingridge
- 135 Nassau St, TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 1M8, Canada; 600 University Ave, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Paul E Fraser
- 60 Leonard Ave, Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Jeffrey T Henderson
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Xiao Yu Wu
- 144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
3
|
Wang C, Hou T, Shao X, Wang C, Wang X, Guan P, Wu Y, Hu X. Functionalized carbon dots with guanidine salt ionic liquid regulate oxidative damage and amyloid aggregation. Int J Biol Macromol 2025; 306:141531. [PMID: 40020805 DOI: 10.1016/j.ijbiomac.2025.141531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
An imbalance in the brain microenvironment, involving oxidative stress and β-amyloid (Aβ) accumulation, is thought to be one of the primary characteristics of early Alzheimer's disease (AD). To address the intricate pathophysiology of AD, therapeutic approaches that can concurrently control several diseases in the AD microenvironment are desperately needed. This study created a guanidine salt ionic liquid functionalized carbon dots (CDs@TGM-IL) to mitigate Aβ aggregation-induced cytotoxicity and scavenge reactive oxygen species (ROS) simultaneously. In vitro studies have shown that CDs@TGM-IL can effectively inhibit Aβ42 protein aggregation, disaggregate mature Aβ42 fibrils, and effectively remove ROS. In vivo studies have found that CDs@TGM-IL can cross the blood-brain barrier (BBB) and improve cognitive performance in AD mice. Just as importantly, CDs@TGM-IL has been shown to have unparalleled biocompatibility. This means that CDs@TGM-IL is expected to be a possible treatment for AD.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chaoli Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Yaoguo Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
4
|
Zhou H, Yin X, Zhang G, Yang Z, Zhou R. Advancing Nanomaterial-Based Strategies for Alzheimer's Disease: A Perspective. JACS AU 2025; 5:1519-1537. [PMID: 40313833 PMCID: PMC12041962 DOI: 10.1021/jacsau.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common cause of dementia. By 2050, the number of AD cases is projected to exceed 131 million, placing significant strain on healthcare systems and economies worldwide. The pathogenesis of AD is multifactorial, involving hypotheses/mechanisms, such as amyloid-β (Aβ) plaques, tau protein hyperphosphorylation, cholinergic neuron damage, oxidative stress, and inflammation. Despite extensive research, the complexity of these potentially entangled mechanisms has hindered the development of treatments that can reverse disease progression. Nanotechnology, leveraging the unique physical, electrical, magnetic, and optical properties of nanomaterials, has emerged as a promising approach for AD treatment. In this Perspective, we first outlined the major current pathogenic hypotheses of AD and then reviewed recent advances in nanomaterials in addressing these hypotheses. We have also discussed the challenges in translating nanomaterials into clinical applications and proposed future directions, particularly the development of multifunctional and multitarget nanomaterials, to enhance their therapeutic efficacy and clinical applicability in AD treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xiuhua Yin
- Center
of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center
of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guanqiao Zhang
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Liu L, He H, Du B, He Y. Nanoscale drug formulations for the treatment of Alzheimer's disease progression. RSC Adv 2025; 15:4031-4078. [PMID: 39926227 PMCID: PMC11803502 DOI: 10.1039/d4ra08128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective disease-modifying treatments. The blood-brain barrier hinders drug delivery to the brain, limiting therapeutic efficacy. Nanoparticle-based systems have emerged as promising tools to overcome these challenges. This review highlights recent advances in nanoparticle technologies for AD treatment, including liposomes, polymeric, inorganic, and biomimetic nanoparticles. These nanoparticles improve drug delivery across the blood-brain barrier, improve stability and bioavailability, and enable targeted delivery to affected brain regions. Functionalization strategies further enhance their therapeutic potential. Multifunctional nanoparticles combining therapeutic and diagnostic properties offer theranostic approaches. While progress has been made, challenges related to safety, targeting precision, and clinical translation remain. Future perspectives emphasize the need for collaborative efforts to optimize nanoparticle design, conduct rigorous studies, and accelerate the development of effective nanotherapeutics. With continued innovation, nanoparticle-based delivery systems hold great promise for revolutionizing AD treatment.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Haini He
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Bin Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610000 China
| | - Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| |
Collapse
|
6
|
Kusi D, Sun Y, Liu C. Advances in Manganese-based nanomaterials for cancer therapy via regulating Non-Ferrous ferroptosis. Int J Pharm 2025; 669:125101. [PMID: 39706379 DOI: 10.1016/j.ijpharm.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis, was first identified in 2012 and is characterized by iron-dependent lipid peroxidation driven by reactive oxygen species (ROS). Since its discovery, ferroptosis has been linked to various diseases, with recent studies highlighting its potential in cancer therapy, particularly for targeting cancer cells that are resistant to traditional treatments like chemotherapy and radiotherapy. While iron has historically been central to ferroptosis, emerging evidence indicates that non-ferrous ions, especially manganese (Mn), also play a crucial role in modulating this process. Mn-based nanomaterials have shown significant promise in cancer treatment by enhancing ROS production, depleting antioxidant defenses, and inducing ferroptosis. Additionally, these materials offer advantages in tumor imaging, immunotherapy, and catalyzing the Fenton-like reactions essential for ferroptosis. This review delves into the mechanisms of Mn-induced ferroptosis, focusing on recent advancements in Mn-based nanomaterials and their applications in chemodynamic therapy and immunotherapy. By leveraging non-ferrous ion-mediated ferroptosis, these approaches provide a novel avenue for cancer treatment. Furthermore, this review explores the potential role of Mn-based nanomaterials in the lipid metabolism pathways involved in ferroptosis and highlights the advantages of Mn ions over other metals in promoting ferroptosis. These insights offer new perspectives for the development of tumor therapies centered on Mn-based nanomaterials.
Collapse
Affiliation(s)
- Dipa Kusi
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yan Sun
- Department of Cardiology, Zhejiang Rongjun Hospital, Jiaxing 314001 PR China.
| | - Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
7
|
Feng Q, Zhang X, Zhao X, Liu J, Wang Q, Yao Y, Xiao H, Zhu Y, Zhang W, Wang L. Intranasal Delivery of Pure Nanodrug Loaded Liposomes for Alzheimer's Disease Treatment by Efficiently Regulating Microglial Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405781. [PMID: 39370581 DOI: 10.1002/smll.202405781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Indexed: 10/08/2024]
Abstract
The activated M1-like microglia induced neuroinflammation is the critical pathogenic event in Alzheimer's disease (AD). Microglial polarization from pro-inflammatory M1 toward anti-inflammatory M2 phenotype is a promising strategy. To efficiently accomplish this, amyloid-β (Aβ) aggregates as the culprit of M1 microglia activation should be uprooted. Interestingly, this study finds out that the self-reassembly of curcumin molecules into carrier-free curcumin nanoparticles (CNPs) exhibits multivalent binding with Aβ to achieve higher inhibitory effect on Aβ aggregation, compared to free curcumin with monovalent effect. Based on this, the CNPs loaded cardiolipin liposomes are developed for efficient microglial polarization. After intranasal administration, the liposomes decompose to release CNPs and cardiolipin in response to AD oxidative microenvironment. The CNPs inhibit Aβ aggregation and promote Aβ phagocytosis/clearance in microglia, removing roadblock to microglial polarization. Subsequently, CNPs are endocytosed by microglia and inhibit TLR4/NF-κB pathway for microglia polarization (M1→M2). Meanwhile, cardiolipin is identified as signaling molecule to normalize microglial dysfunction to prevent pro-inflammatory factors release. In AD transgenic mice, neuroinflammation, Aβ burden, and memory deficits are relieved after treatment. Through combined attack by extracellularly eradicating roadblock of Aβ aggregation and intracellularly inhibiting inflammation-related pathways, this nanotechnology assisted delivery system polarizes microglia efficiently, providing a reliable strategy in AD treatment.
Collapse
Affiliation(s)
- Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, P. R. China
| | - Xueli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
| | - Xiaowen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
| | - Jia Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
| | - Qing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
| | - Yuqi Yao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
| | - Huifang Xiao
- Department of Pharmacy, Henan General Hospital, Zhengzhou, 450002, P. R. China
| | - Yucui Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
| | - Wenwen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, P. R. China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, P. R. China
| |
Collapse
|
8
|
Zhen X, Li Y, Yuan W, Zhang T, Li M, Huang J, Kong N, Xie X, Wang S, Tao W. Biointerface-Engineered Hybrid Nanovesicles for Targeted Reprogramming of Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401495. [PMID: 38851884 DOI: 10.1002/adma.202401495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/21/2024] [Indexed: 06/10/2024]
Abstract
The tumor microenvironment (TME) of typical tumor types such as triple-negative breast cancer is featured by hypoxia and immunosuppression with abundant tumor-associated macrophages (TAMs), which also emerge as potential therapeutic targets for antitumor therapy. M1-like macrophage-derived exosomes (M1-Exos) have emerged as a promising tumor therapeutic candidate for their tumor-targeting and macrophage-polarization capabilities. However, the limited drug-loading efficiency and stability of M1-Exos have hindered their effectiveness in antitumor applications. Here, a hybrid nanovesicle is developed by integrating M1-Exos with AS1411 aptamer-conjugated liposomes (AApt-Lips), termed M1E/AALs. The obtained M1E/AALs are loaded with perfluorotributylamine (PFTBA) and IR780, as P-I, to construct P-I@M1E/AALs for reprogramming TME by alleviating tumor hypoxia and engineering TAMs. P-I@M1E/AAL-mediated tumor therapy enhances the in situ generation of reactive oxygen species, repolarizes TAMs toward an antitumor phenotype, and promotes the infiltration of T lymphocytes. The synergistic antitumor therapy based on P-I@M1E/AALs significantly suppresses tumor growth and prolongs the survival of 4T1-tumor-bearing mice. By integrating multiple treatment modalities, P-I@M1E/AAL nanoplatform demonstrates a promising therapeutic approach for overcoming hypoxic and immunosuppressive TME by targeted TAM reprogramming and enhanced tumor photodynamic immunotherapy. This study highlights an innovative TAM-engineering hybrid nanovesicle platform for the treatment of tumors characterized by hypoxic and immunosuppressive TME.
Collapse
Affiliation(s)
- Xueyan Zhen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wanqing Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Tingting Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Min Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Zetrini AE, Abbasi AZ, He C, Lip H, Alradwan I, Rauth AM, Henderson JT, Wu XY. Targeting DNA damage repair mechanism by using RAD50-silencing siRNA nanoparticles to enhance radiotherapy in triple negative breast cancer. Mater Today Bio 2024; 28:101206. [PMID: 39221201 PMCID: PMC11364914 DOI: 10.1016/j.mtbio.2024.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Radiotherapy (RT) is one of major therapeutic modalities in combating breast cancer. In RT, ionizing radiation is employed to induce DNA double-strand breaks (DSBs) as a primary mechanism that causes cancer cell death. However, the induced DNA damage can also trigger the activation of DNA repair mechanisms, reducing the efficacy of RT treatment. Given the pivotal role of RAD50 protein in the radiation-responsive DNA repair pathways involving DSBs, we developed a novel polymer-lipid based nanoparticle formulation containing RAD50-silencing RNA (RAD50-siRNA-NPs) and evaluated its effect on the RAD50 downregulation as well as cellular and tumoral responses to ionizing radiation using human triple-negative breast cancer as a model. The RAD50-siRNA-NPs successfully preserved the activity of the siRNA, facilitated its internalization by cancer cells via endocytosis, and enabled its lysosomal escape. The nanoparticles significantly reduced RAD50 expression, whereas RT alone strongly increased RAD50 levels at 24 h. Pretreatment with RAD50-siRNA-NPs sensitized the cancer cells to RT with ∼2-fold higher level of initial DNA DSBs as determined by a γH2AX biomarker and a 2.5-fold lower radiation dose to achieve 50 % colony reduction. Intratumoral administration of RAD50-siRNA-NPs led to a remarkable 53 % knockdown in RAD50. The pretreatment with RAD50-siRNA-NPs followed by RT resulted in approximately a 2-fold increase in DNA DSBs, a 4.5-fold increase in cancer cell apoptosis, and 2.5-fold increase in tumor growth inhibition compared to RT alone. The results of this work demonstrate that RAD50 silencing by RAD50-siRNA-NPs can disrupt RT-induced DNA damage repair mechanisms, thereby significantly enhancing the radiation sensitivity of TNBC MDA-MB-231 cells in vitro and in orthotopic tumors as measured by colony forming and tumor regrowth assays, respectively.
Collapse
Affiliation(s)
- Abdulmottaleb E. Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Azhar Z. Abbasi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Andrew M. Rauth
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey T. Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| |
Collapse
|
10
|
Li LY, Park E, He C, Abbasi AZ, Henderson JT, Fraser PE, Uetrecht JP, Rauth AM, Wu XY. Evaluation of the biodistribution and preliminary safety profile of a novel brain-targeted manganese dioxide-based nanotheranostic system for Alzheimer's disease. Nanotoxicology 2024; 18:315-334. [PMID: 38847611 DOI: 10.1080/17435390.2024.2361687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 08/03/2024]
Abstract
A novel brain-targeted and reactive oxygen species-activatable manganese dioxide containing nanoparticle system functionalized with anti-amyloid-β antibody (named aAβ-BTRA-NC) developed by our group has shown great promise as a highly selective magnetic resonance imaging (MRI) contrast agent for early detection and multitargeted disease-modifying treatment of Alzheimer's disease (AD). To further evaluate the suitability of the formulation for future clinical application, we investigated the safety, biodistribution, and pharmacokinetic profile of aAβ-BTRA-NC in a transgenic TgCRND8 mouse AD model, wild type (WT) littermate, and CD-1 mice. Dose-ascending studies demonstrated that aAβ-BTRA-NC was well-tolerated by the animals up to 300 μmol Mn/kg body weight [b.w.], 3 times the efficacious dose for early AD detection without apparent adverse effects; Histopathological, hematological, and biochemical analyses indicated that a single dose of aAβ-BTRA-NC did not cause any toxicity in major organs. Immunotoxicity data showed that aAβ-BTRA-NC was safer than commercially available gadolinium-based MRI contrast agents at an equivalent dose of 100 μmol/kg b.w. of metal ions. Intravenously administered aAβ-BTRA-NC was taken up by main organs with the order of liver, kidneys, intestines, spleen, followed by other organs, and cleared after one day to one week post injection. Pharmacokinetic analysis indicated that the plasma concentration profile of aAβ-BTRA-NC followed a 2-compartmental model with faster clearance in the AD mice than in the WT mice. The results suggest that aAβ-BTRA-NC exhibits a strong safety profile as a nanotheranostic agent which warrants more robust preclinical development for future clinical applications.
Collapse
Affiliation(s)
- Lily Yi Li
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Elliya Park
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Chunsheng He
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Azhar Z Abbasi
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey T Henderson
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jack P Uetrecht
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Xiao Yu Wu
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Jiang Y, Zhao J, Zhang D. Manganese Dioxide-Based Nanomaterials for Medical Applications. ACS Biomater Sci Eng 2024; 10:2680-2702. [PMID: 38588342 DOI: 10.1021/acsbiomaterials.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials can react with trace hydrogen peroxide (H2O2) to produce paramagnetic manganese (Mn2+) and oxygen (O2), which can be used for magnetic resonance imaging and alleviate the hypoxic environment of tumors, respectively. MnO2 nanomaterials also can oxidize glutathione (GSH) to produce oxidized glutathione (GSSG) to break the balance of intracellular redox reactions. As a consequence of the sensitivity of the tumor microenvironment to MnO2-based nanomaterials, these materials can be used as multifunctional diagnostic and therapeutic platforms for tumor imaging and treatment. Importantly, when MnO2 nanomaterials are implanted along with other therapeutics, synergetic tumor therapy can be achieved. In addition to tumor treatment, MnO2-based nanomaterials display promising prospects for tissue repair, organ protection, and the treatment of other diseases. Herein, we provide a thorough review of recent progress in the use of MnO2-based nanomaterials for biomedical applications, which may be helpful for the design and clinical translation of next-generation MnO2 nanomaterials.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiayi Zhao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
12
|
Yang C, Liu G, Zeng X, Xiang Y, Chen X, Le W. Therapeutic effects of long-term HBOT on Alzheimer's disease neuropathologies and cognitive impairment in APP swe/PS1 dE9 mice. Redox Biol 2024; 70:103006. [PMID: 38241837 PMCID: PMC10831255 DOI: 10.1016/j.redox.2023.103006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the pathological hallmarks of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. Although there is a hope that anti-amyloid monoclonal antibodies may emerge as a new therapy for AD, the high cost and side effect is a big concern. Non-drug therapy is attracting more attention and may provide a better resolution for the treatment of AD. Given the fact that hypoxia contributes to the pathogenesis of AD, hyperbaric oxygen therapy (HBOT) may be an effective intervention that can alleviate hypoxia and improve AD. However, it remains unclear whether long-term HBOT intervention in the early stage of AD can slow AD progression and ultimately prevent cognitive impairment in this disease. In this study we applied consecutive 3-month HBOT interventions on 3-month-old APPswe/PS1dE9 AD mice which represent the early stage of AD. When the APPswe/PS1dE9 mice at 9-month-old which represent the disease stage we measured cognitive function, 24-h blood oxygen saturation, Aβ and tau pathologies, vascular structure and function, and neuroinflammation in APPswe/PS1dE9 mice. Our results showed that long-term HBOT can attenuate the impairments in cognitive function observed in 9-month-old APPswe/PS1dE9 mice. Most importantly, HBOT effectively reduced the progression of Aβ plaques deposition, hyperphosphorylated tau protein aggregation, and neuronal and synaptic degeneration in the AD mice. Further, long-term HBOT was able to enhance blood oxygen saturation level. Besides, long-term HBOT can improve vascular structure and function, and reduce neuroinflammation in AD mice. This study is the first to demonstrate that long-term HBOT intervention in the early stage of AD can attenuate cognitive impairment and AD-like pathologies. Overall, these findings highlight the potential of long-term HBOT as a disease-modifying approach for AD treatment.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianrong Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Xiang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
13
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
15
|
Yan T, Ding F, Zhang Y, Wang Y, Wang Y, Zhang Y, Zhu F, Zhang G, Zheng X, Jia G, Zhou F, Zhao Y, Zhao Y. Astaxanthin Inhibits H 2O 2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation. Mar Drugs 2024; 22:57. [PMID: 38393028 PMCID: PMC10890442 DOI: 10.3390/md22020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China; (T.Y.); (F.D.); (Y.Z.); (Y.W.); (Y.W.); (Y.Z.); (F.Z.); (G.Z.); (X.Z.); (G.J.); (F.Z.); (Y.Z.)
| |
Collapse
|
16
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|