1
|
Shahriar SMS, Andrabi SM, Al-Gahmi AM, Yan Z, McCarthy AD, Wang C, Yusuf ZA, Sharma NS, Busquets ME, Nilles MI, Jara CP, Yang K, Carlson MA, Xie J. Bicomponent nano- and microfiber aerogels for effective management of junctional hemorrhage. Nat Commun 2025; 16:2403. [PMID: 40064972 PMCID: PMC11893793 DOI: 10.1038/s41467-025-57836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Managing junctional hemorrhage is challenging due to ineffective existing techniques, with the groin being the most common site, accounting for approximately 19.2% of potentially survivable field deaths. Here, we report a bicomponent nano- and microfiber aerogel (NMA) for injection into deep, narrow junctional wounds to effectively halt bleeding. The aerogel comprises intertwined poly(lactic acid) nanofibers and poly(ε-caprolactone) microfibers, with mechanical properties tunable through crosslinking. Optimized aerogels demonstrate improved resilience, toughness, and elasticity, enabling rapid re-expansion upon blood contact. They demonstrate superior blood absorption and clotting efficacy compared to commercial products (i.e., QuikClot® Combat Gauze and XStat®). Most importantly, in a lethal swine junctional wound model (Yorkshire swine, both male and female, n = 5), aerogel treatment achieved immediate hemostasis, a 100% survival rate, no rebleeding, hemodynamic stability, and stable coagulation, hematologic, and arterial blood gas testing.
Collapse
Affiliation(s)
- S M Shatil Shahriar
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Syed Muntazir Andrabi
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Al-Murtadha Al-Gahmi
- Department of Surgery - General Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zishuo Yan
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alec D McCarthy
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chenlong Wang
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zakariya A Yusuf
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Navatha Shree Sharma
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milton E Busquets
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mallory I Nilles
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carlos Poblete Jara
- Department of Surgery - Vascular Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kai Yang
- Department of Surgery - Plastic & Reconstructive Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Carlson
- Department of Surgery - General Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Jingwei Xie
- Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Yang X, Bi S, He C, Yuan L, Zhang L, Gu J, Yan B, He J. Rapid Fluid-Induced-Expanding Chitosan-Derived Hemostatic Sponges with Excellent Antimicrobial and Antioxidant Properties for Incompressible Hemorrhage and Wound Healing. Biomacromolecules 2025; 26:689-704. [PMID: 39743505 DOI: 10.1021/acs.biomac.4c01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Chitosan-based materials are known for their excellent biocompatibility and inherent hemostatic properties. However, their hemostatic efficiency is significantly affected by poor wettability and mechanical strength. Herein, we developed a novel hemostatic super elastic sponge from mussel-inspired chitosan modified with long alkyl and catechol functional groups (HMCC) via a simple freezing-drying procedure. The incorporation of decanal and catechol in the HMCC sponge significantly enhances its antimicrobial and antioxidant properties and facilitates multiple interactions with blood cells, thus promoting their enrichment for rapid hemostasis. Moreover, HMCC sponges exhibit high compressibility and rapid fluid-induced size recovery capacity, enabling wound shape adaptation to ensure minimizing irritation. In vivo experiments revealed that HMCC sponges possessed enhanced procoagulant, hemostasis abilities, and favorable degradability and could promote wound healing in a rat skin wound model. These results highlight the potential of the HMCC sponge as a promising solution for the clinical management of major bleeding.
Collapse
Affiliation(s)
- Xuekun Yang
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Changyuan He
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Liubo Yuan
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Li Zhang
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Bin Yan
- Department of Cardiovascular Surgery, West China Hospital, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| |
Collapse
|
3
|
Zhang G, Zhou Y, Feng Y, Zhu S, Zhuge P, Chen S, Fang Y, Wan W. Chinese Yam-Derived Adhesive Microgel for Effective Management of Uncontrolled Hemorrhage and Trauma-Induced Skin Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70297-70309. [PMID: 39671263 DOI: 10.1021/acsami.4c16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Chinese yam (Dioscorea opposita), a traditional medicinal plant, has gained renewed interest in contemporary research due to its broad therapeutic potential. In this study, we developed an adhesive yam microgel through a series of peeling, grinding, sieving, and rehydration processes. Our in vitro experiments demonstrated that the yam microgel was noncytotoxic, effectively scavenged free radicals, and promoted cell migration. Additionally, the microgels exhibit good blood compatibility and biodegradability. In vivo, we first evaluated the hemostatic properties of the yam microgel in different hemorrhage models in rats. It demonstrated strong hemostatic capabilities because it could adsorb many blood cells and platelets, activate platelets, and facilitate coagulation. Furthermore, we observed that the yam microgel promotes the repair of acute skin tissue defects by enhancing cell proliferation and neovascularization as well as modulating the inflammatory response, thereby accelerating wound healing. Finally, we found that the yam microgel can serve as a biological adhesive, effectively promoting wound closure through a mechanism similar to its role in facilitating skin tissue repair. The design of a low-cost, safe, and effective yam microgel will provide a promising strategy for hemostasis and wound healing.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
| | - Yangbo Zhou
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Feng
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pan Zhuge
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Shixuan Chen
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yongjin Fang
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Wenbing Wan
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
| |
Collapse
|
4
|
Asadian E, Abbaszadeh S, Ghorbani-Bidkorpeh F, Rezaei S, Xiao B, Santos HA, Shahbazi MA. Hijacking plant skeletons for biomedical applications: from regenerative medicine and drug delivery to biosensing. Biomater Sci 2024; 13:9-92. [PMID: 39534968 DOI: 10.1039/d4bm00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering. Highlighting their structural integrity, tunable properties, and possibility of chemical modification, the review explores diverse preparation strategies to tailor plant skeleton properties for bone, neural, cardiovascular, skeletal muscle, and tendon tissue engineering. Such applications stem from the cellulosic three-dimensional structure of different parts of plants, which can mimic the complexity of native tissues and extracellular matrices, providing an ideal environment for cell adhesion, proliferation, and differentiation. We also discuss the application of plant skeletons as carriers for drug delivery due to their structural diversity and versatility in encapsulating and releasing therapeutic agents with controlled kinetics. Furthermore, we present the emerging role played by plant-derived materials in biosensor development for diagnostic and monitoring purposes. Challenges and future directions in the field are also discussed, offering insights into the opportunities for future translation of sustainable plant-based technologies to address critical healthcare needs.
Collapse
Affiliation(s)
- Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Bo Xiao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
5
|
Li M, Gong J, Yu Y, Xu J, Yin Y, Wang A, Wang J. Sericin/silk fibroin composite aerogel for hemostatic application. APPLIED MATERIALS TODAY 2024; 41:102514. [DOI: 10.1016/j.apmt.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Wang M, Sun P, Zhang J, Li D, Liu Y, Xia Y, Shao L, Jia M. Intelligent and biocompatible cellulose aerogels featured with high-elastic and fast-hemostatic for epistaxis and wound healing. Int J Biol Macromol 2024; 277:134239. [PMID: 39074712 DOI: 10.1016/j.ijbiomac.2024.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Nasal tamponade is a commonly employed and highly effective treatment method for preventing nasal bleeding. However, the current nasal packing hemostatic materials exhibit some limitations, such as low hemostatic efficiency, the potential for causing secondary injury when removed from the nasal cavity, limited intelligence in their design, and an inability to promote the healing of nasal mucosa wounds. Herein, we report the fabrication of a smart cellulose aerogel through the covalent cross-linking of carboxymethyl cellulose (CMC) macromolecules, while incorporating one-dimensional cellulose nanofibers (CNF) and two-dimensional MXene as reinforcing network scaffolds and conductive fillers. The abundant hydrogen and ether bonds in aerogels make them possess high elasticity in both dry and wet states, which can be compressed 100 times at 90 % deformation with a stress loss of <10 % under water. The highly elastic aerogels can be filled into the narrow nasal passages, pressuring the capillaries and reducing the amount of bleeding. Moreover, the strong interface between aerogels and blood can promote red blood cell aggregation, platelet adhesion and activation, activate intrinsic coagulation pathway and accelerate blood coagulation, resulting in excellent hemostatic ability. Furthermore, the aerogels exhibit excellent hemocompatibility and cytocompatibility, making them suitable for wound healing and capable of fully healing wounds within 15 days. Notably, the presence of MXene causes the aerogels to form a conductive network when exposed to blood, enabling them to perform real-time hemostatic monitoring without removing the dressing. This innovative biomedical aerogel, prepared from natural materials, shows excellent potential for applications in rapid nasal hemostasis.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China.
| | - Peipei Sun
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Jing Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Dongwei Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Yuhua Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Yiran Xia
- Shandong Success Biotechnology Co., Ltd, Jinan 250353, PR China
| | - Lupeng Shao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Mengying Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| |
Collapse
|
7
|
Herliana H, Yusuf HY, Laviana A, Wandawa G, Abbas B. In Vitro Hemostatic Activity of Novel Fish Gelatin-Alginate Sponge (FGAS) Prototype. Polymers (Basel) 2024; 16:2047. [PMID: 39065364 PMCID: PMC11280852 DOI: 10.3390/polym16142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
A hemostatic sponge prototype was successfully synthesized from fish gelatin as an alternative to mammalian gelatin; it was mixed with alginate in certain combinations, double cross-linked with calcium ions, and gamma irradiated at a dose of 20 kGy to improve the characteristics and effectiveness of its function as a local hemostatic agent. There were improvements in the physicochemical and mechanical properties, porosity index, absorption capacity, biodegradation properties, biocompatibility, and hemocompatibility of the fish gelatin-alginate sponge (FGAS) prototypes compared with the pure fish gelatin sponge. Hemostatic activity tests showed that the means for clotting time, prothrombin time, and activated partial thromboplastin time were shorter in the FGAS prototype than in the negative control, and there was no significant difference compared with the commercial gelatin sponge. The hemostatic mechanism of the FGAS prototype combined a passive mechanism as a concentrator factor and an active mechanism through the release of calcium ions as a coagulation factor in the coagulation cascade process.
Collapse
Affiliation(s)
- Heri Herliana
- Doctoral Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Harmas Yazid Yusuf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Avi Laviana
- Department of Orthodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Ganesha Wandawa
- The Indonesian Naval Dental Institute, Jakarta 10210, Indonesia
| | - Basril Abbas
- Research Center for Radiation Process Technology, National Research and Innovation Agency (NRIA), Jakarta 12440, Indonesia
| |
Collapse
|
8
|
Du X, Li R, Zhang T, Hu Y, Hou Y, Zhang J, Wang L. Biodegradable quaternized silk fibroin sponge with highly uniform pore structure for traumatic hemostasis and anti-infection. Int J Biol Macromol 2024; 273:132989. [PMID: 38852717 DOI: 10.1016/j.ijbiomac.2024.132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Developing a biodegradable sponge with rapid shape recovery and potent antibacterial and coagulation properties for traumatic hemostasis and anti-infection remains challenging. Herein, we fabricated quaternized silk fibroin (SF) sponges by freeze-drying under a constant cooling rate and modification with quaternary ammonium groups. We found the constant cooling rate enabled the sponges with a highly uniform pore structure, which provided excellent self-elasticity and shape recovery. Decoration with quaternary ammonium groups enhanced blood cells adhesion, aggregation, and activation, as well as resistance to infections from Staphylococcus aureus and Escherichia coli. The SF sponge had superior hemostatic capacity to gauze and commercial gelatin sponge in different hemorrhage models. The SF sponge exhibited favorable biodegradability and biocompatibility. Moreover, The SF sponge also promoted host cell infiltration, capillary formation, and tissue ingrowth, suggesting its potential for guiding tissue regeneration. The developed SF sponge holds great application prospects for traumatic hemostasis, anti-infection, and guiding tissue regeneration.
Collapse
Affiliation(s)
- Xinchen Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Chemical and Environment Engineering, Hetao College, Bayannaoer, Inner Mongolia 015000, China
| | - Ruxiang Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, No. 406, Jiefangnan Road, Hexi District, Tianjin 300211, China
| | - Yaqi Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiyang Hou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Wan W, Feng Y, Tan J, Zeng H, Jalaludeen RK, Zeng X, Zheng B, Song J, Zhang X, Chen S, Pan J. Carbonized Cellulose Aerogel Derived from Waste Pomelo Peel for Rapid Hemostasis of Trauma-Induced Bleeding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307409. [PMID: 38477567 PMCID: PMC11109610 DOI: 10.1002/advs.202307409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/05/2024] [Indexed: 03/14/2024]
Abstract
Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.
Collapse
Affiliation(s)
- Wenbing Wan
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Yang Feng
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Jiang Tan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang ProvinceZhejiang Engineering Research Center for Hospital Emergency and Process DigitizationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Huiping Zeng
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Rafeek Khan Jalaludeen
- The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Xiaoxi Zeng
- Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduChina
| | - Bin Zheng
- Wenzhou Safety (Emergency) Institute of Tianjin UniversityWenzhouChina
| | - Jingchun Song
- Department of Critical Care MedicineNo. 908th Hospital of PLA Logistic Support ForceNanchang330002China
| | - Xiyue Zhang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Macau University of Science and TechnologyTaipaMacau999078China
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Jingye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang ProvinceZhejiang Engineering Research Center for Hospital Emergency and Process DigitizationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
10
|
Zhang X, Wang X, Yuan P, Ma C, Wang Y, Zhang Z, Wang P, Zhao Y, Wu W. A 3D-Printed Cuttlefish Bone Elastomeric Sponge Rapidly Controlling Noncompressible Hemorrhage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307041. [PMID: 38072798 DOI: 10.1002/smll.202307041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Indexed: 05/12/2024]
Abstract
Developing a self-expanding hemostatic sponge with high blood absorption and rapid shape recovery for noncompressible hemorrhage remains a challenge. In this study, a 3D-printed cuttlefish bone elastomeric sponge (CBES) is fabricated, which combined ordered channels and porous structures, presented tunable mechanical strength, and shape memory potentials. The incorporation of cuttlefish bone powder (CBp) plays key roles in concentrating blood components, promoting aggregation of red blood cells and platelets, and activating platelets, which makes CBES show enhanced hemostatic performance compared with commercial gelatin sponges in vivo. Moreover, CBES promotes more histiocytic infiltration and neovascularization in the early stage of degradation than gelatin sponges, which is conducive to the regeneration and repair of injured tissue. To conclude, CBp loaded 3D-printed elastomeric sponges can promote coagulation, present the potential to guide tissue healing, and broaden the hemostatic application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuqiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yujiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zheqian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Centre for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
11
|
Yin C, Li Y, Yu J, Deng Z, Liu S, Shi X, Tang D, Chen X, Zhang L. Dragon's Blood-Loaded Mesoporous Silica Nanoparticles for Rapid Hemostasis and Antibacterial Activity. Molecules 2024; 29:1888. [PMID: 38675708 PMCID: PMC11054711 DOI: 10.3390/molecules29081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Dragon's blood (DB) is a traditional Chinese medicine (TCM) with hemostatic effects and antibacterial properties. However, it is still challenging to use for rapid hemostasis because of its insolubility. In this study, different amounts of DB were loaded on mesoporous silica nanoparticles (MSNs) to prepare a series of DB-MSN composites (5DB-MSN, 10DB-MSN, and 20DB-MSN). DB-MSN could quickly release DB and activate the intrinsic blood coagulation cascade simultaneously by DB and MSN. Hemostasis tests demonstrated that DB-MSN showed superior hemostatic effects than either DB or MSNs alone, and 10DB-MSN exhibited the best hemostatic effect. In addition, the antibacterial activities of DB-MSN against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) improved with the increase in DB. Furthermore, the hemolysis assay and cytocompatibility assay demonstrated that all DB-MSNs exhibited excellent biocompatibility. Based on these results, 10DB-MSN is expected to have potential applications for emergency hemostatic and antibacterial treatment in pre-hospital trauma.
Collapse
Affiliation(s)
- Cuiyun Yin
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Yihang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Jing Yu
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Zhaoyou Deng
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Shifang Liu
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Xuanchao Shi
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Deying Tang
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| | - Lixia Zhang
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Jinghong 666100, China; (C.Y.); (J.Y.); (Z.D.); (S.L.); (X.S.); (D.T.); (X.C.)
- Key Laboratory of Sustainable Utilization of Southern Medicine, Jinghong 666100, China
| |
Collapse
|
12
|
Xu L, Jiao G, Huang Y, Ren P, Liang M, Wei D, Zhang T. Laponite nanoparticle-crosslinked carboxymethyl cellulose-based injectable hydrogels with efficient underwater-specific adhesion for rapid hemostasis. Int J Biol Macromol 2024; 255:128288. [PMID: 37992924 DOI: 10.1016/j.ijbiomac.2023.128288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Tissue adhesives have attracted intense and increasing interest due to their multiple biomedical applications. Despite the rapid development of adhesive hydrogels, huge challenges remain for materials that can ensure strong adhesion and seal hemostasis in aqueous and blood environments. To address this issue, we have developed an innovative design of PAA-based coacervate hydrogel with strong wet adhesion capability through a simple mixture of PAA copolymers with oxidized-carboxymethylcellulose (OCMC), and tannic acid (TA) as the main components, and structurally enhanced with natural clays (Laponite XLG). The absorbed TA provides solid adhesion to dry and wet substrates via multiple interactions, which endows the XLG-enhanced coacervate with the desired underwater adhesive strength. More importantly, the dielectric constant is introduced to evaluate the polarity of the tested samples, which may be used as guidance for the design of mussel-inspired adhesives with even better underwater adhesive properties. In vivo hemorrhage experiments further confirmed that the hydrogel adhesive dramatically shortened the hemostatic time to tens of seconds. Overall, the persistent adhesion and acceptable cytocompatibility of the hydrogel nanocomposite make it a promising alternative suture-free approach for rapid hemostasis at different length scales and is expected to be extended to clinical application for other organ injuries.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guanhua Jiao
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yulin Huang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Pengfei Ren
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Liang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dandan Wei
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|