1
|
Zhu Z, Wu D, Feng L, He X, Hu T, Ye A, Fu X, Yang W, Wang Y. Architecting the Microenvironment Skeleton of Active Materials in High-Capacity Electrodes by Self-Assembled Nano-Building Blocks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307086. [PMID: 38155510 DOI: 10.1002/smll.202307086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Indexed: 12/30/2023]
Abstract
In analogy to the cell microenvironment in biology, understanding and controlling the active-material microenvironment (ME@AM) microstructures in battery electrodes is essential to the successes of energy storage devices. However, this is extremely difficult for especially high-capacity active materials (AMs) like sulfur, due to the poor controlling on the electrode microstructures. To conquer this challenge, here, a semi-dry strategy based on self-assembled nano-building blocks is reported to construct nest-like robust ME@AM skeleton in a solvent-and-stress-less way. To do that, poly(vinylidene difluoride) nanoparticle binder is coated onto carbon-nanofibers (NB@CNF) via the nanostorm technology developed in the lab, to form self-assembled nano-building blocks in the dry slurry. After compressed into an electrode prototype, the self-assembled dry-slurry is then bonded by in-situ nanobinder solvation. With this strategy, mechanically strong thick sulfur electrodes are successfully fabricated without cracking and exhibit high capacity and good C-rate performance even at a high AM loading (25.0 mg cm-2 by 90 wt% in the whole electrode). This study may not only bring a promising solution to dry manufacturing of batteries, but also uncover the ME@AM structuring mechanism with nano-binder for guiding the design and control on electrode microstructures.
Collapse
Affiliation(s)
- Zhiwei Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dichen Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lanxiang Feng
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610225, China
| | - Xuewei He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ting Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ang Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuewei Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|