1
|
Raskatla V, Liu T, Li J, MacDonald KF, Zheludev NI. Continuous Space-Time Crystal State Driven by Nonreciprocal Optical Forces. PHYSICAL REVIEW LETTERS 2024; 133:136202. [PMID: 39392983 DOI: 10.1103/physrevlett.133.136202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 10/13/2024]
Abstract
We show that the continuous time crystal state can arise in an ensemble of linear oscillators from nonconservative coupling via optical radiation pressure forces. This new mechanism comprehensively explains observations of the time crystal state in an array of nanowires illuminated with light [T. Liu et al., Nat. Phys. 19, 986 (2023).NPAHAX1745-247310.1038/s41567-023-02023-5]. Being fundamentally different from regimes of nonlinear synchronization, it has relevance to a wide range of interacting many-body systems, including in the realms of chemistry, biology, weather, and nanoscale matter.
Collapse
|
2
|
Yao J, Lai F, Fan Y, Wang Y, Huang SH, Leng B, Liang Y, Lin R, Chen S, Chen MK, Wu PC, Xiao S, Tsai DP. Nonlocal meta-lens with Huygens' bound states in the continuum. Nat Commun 2024; 15:6543. [PMID: 39095407 PMCID: PMC11297327 DOI: 10.1038/s41467-024-50965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Meta-lenses composed of artificial meta-atoms have stimulated substantial interest due to their compact and flexible wavefront shaping capabilities, outperforming bulk optical devices. The operating bandwidth is a critical factor determining the meta-lens' performance across various wavelengths. Meta-lenses that operate in a narrowband manner relying on nonlocal effects can effectively reduce disturbance and crosstalk from non-resonant wavelengths, making them well-suitable for specialized applications such as nonlinear generation and augmented reality/virtual reality display. However, nonlocal meta-lenses require striking a balance between local phase manipulation and nonlocal resonance excitation, which involves trade-offs among factors like quality-factor, efficiency, manipulation dimensions, and footprint. In this work, we experimentally demonstrate the nonlocal meta-lens featuring Huygens' bound states in the continuum (BICs) and its near-infrared imaging application. All-dielectric integrated-resonant unit is particularly optimized to efficiently induce both the quasi-BIC and generalized Kerker effect, while ensuring the rotation-angle robustness for generating geometric phase. The experimental results show that the single-layer nonlocal Huygens' meta-lens possesses a high quality-factor of 104 and achieves a transmission polarization conversion efficiency of 55%, exceeding the theoretical limit of 25%. The wavelength-selective two-dimensional focusing and imaging are demonstrated as well. This work will pave the way for efficient nonlocal wavefront shaping and meta-devices.
Collapse
Affiliation(s)
- Jin Yao
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Fangxing Lai
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yubin Fan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuhan Wang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shih-Hsiu Huang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Borui Leng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yao Liang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rong Lin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Shufan Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan.
- Meta-nanoPhotonics Center, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Shumin Xiao
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
3
|
Hou Y, Zhu C, Ban G, Shen Z, Liang Y, Chen K, Wang C, Shi H. Advancements and Challenges in the Application of Metal-Organic Framework (MOF) Nanocomposites for Tumor Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6295-6317. [PMID: 38919774 PMCID: PMC11198007 DOI: 10.2147/ijn.s463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoscale metal-organic frameworks (MOFs) offer high biocompatibility, nanomaterial permeability, substantial specific surface area, and well-defined pores. These properties make MOFs valuable in biomedical applications, including biological targeting and drug delivery. They also play a critical role in tumor diagnosis and treatment, including tumor cell targeting, identification, imaging, and therapeutic methods such as drug delivery, photothermal effects, photodynamic therapy, and immunogenic cell death. The diversity of MOFs with different metal centers, organics, and surface modifications underscores their multifaceted contributions to tumor research and treatment. This review is a summary of these roles and mechanisms. The final section of this review summarizes the current state of the field and discusses prospects that may bring MOFs closer to pharmaceutical applications.
Collapse
Affiliation(s)
- Yingze Hou
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Can Zhu
- Department of Urology, The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kun Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chenbo Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Heng Shi
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
4
|
Yao J, Hsu WL, Liang Y, Lin R, Chen MK, Tsai DP. Nonlocal metasurface for dark-field edge emission. SCIENCE ADVANCES 2024; 10:eadn2752. [PMID: 38630828 PMCID: PMC11023491 DOI: 10.1126/sciadv.adn2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Nonlocal effects originating from interactions between neighboring meta-atoms introduce additional degrees of freedom for peculiar characteristics of metadevices, such as enhancement, selectivity, and spatial modulation. However, they are generally difficult to manipulate because of the collective responses of multiple meta-atoms. Here, we experimentally demonstrate the nonlocal metasurface to realize the spatial modulation of dark-field emission. Plasmonic asymmetric split rings (ASRs) are designed to simultaneously excite local dipole resonance and nonlocal quasi-bound states in the continuum and spatially extended modes. With one type of unit, nonlocal effects are tailored by varying array periods. ASRs at the metasurface's edge lack sufficient interactions, resulting in stronger dark-field scattering and thus edge emission properties of the metasurface. Pixel-level spatial control is demonstrated by simply erasing some units, providing more flexibility than conventional local metasurfaces. This work paves the way for manipulating nonlocal effects and facilitates applications in optical trapping and sorting at the nanoscale.
Collapse
Affiliation(s)
- Jin Yao
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Wei-Lun Hsu
- Department of Optics and Photonics, National Central University, Taoyuan 320371, Taiwan
| | - Yao Liang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rong Lin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|