1
|
Hu T, Yue Z, Wang Y, Yu Y, Chang Y, Pei L, Chen W, Han P, Martens W, Waclawik ER, Wu H, Yong Zhu H, Jia J. Cu@CuO x/WO 3 with photo-regulated singlet oxygen and oxygen adatoms generation for selective photocatalytic aromatic amines to imines. J Colloid Interface Sci 2024; 663:632-643. [PMID: 38430833 DOI: 10.1016/j.jcis.2024.02.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Photocatalysts can absorb light and activate molecular O2 under mild conditions, but the generation of unsuitable reactive oxygen species often limits their use in synthesizing fine chemicals. To address this issue, we disperse 1 wt% copper on tungsten trioxide (WO3) support to create an efficient catalyst for selective oxidative coupling of aromatic amines to imines under sunlight irradiation at room temperature. Copper consists of a metallic copper core and an oxide shell. Experimental and density functional theory calculations have confirmed that Cu2O is the primary activation site. Under λ < 475 nm, the light excites electrons of the valence bands in Cu2O and WO3, which activate O2 to superoxide radical •O2-. Then rapidly transforms into oxygen adatoms (•O) and oxygen anion radicals (•O-) species on the surface of Cu2O. Simultaneously, it is captured by holes in the WO3 valence band to generate singlet oxygen (1O2). •O bind to 1O2 promoting the coupling reaction of amines. When λ > 475 nm, intense light absorption due to the localized surface plasmon resonance excites numerous electrons in Cu to promote the oxidative coupling with the adsorbed O2. This study presents a promising approach towards the design of high-performance photocatalysts for solar energy conversion and environmentally-friendly oxidative organic synthesis.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Zhizhu Yue
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Yonghe Yu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Yuhong Chang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Linjuan Pei
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Wenwen Chen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Pengfei Han
- College of Chemistry and Chemical Engineering Hunan University Changsha, 410082, PR China
| | - Wayde Martens
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Eric R Waclawik
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China
| | - Huai Yong Zhu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science Shanxi Normal University Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
2
|
Diab GAA, da Silva MAR, Rocha GFSR, Noleto LFG, Rogolino A, de Mesquita JP, Jiménez‐Calvo P, Teixeira IF. A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300185. [PMID: 38868607 PMCID: PMC11165522 DOI: 10.1002/gch2.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Indexed: 06/14/2024]
Abstract
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
Collapse
Affiliation(s)
- Gabriel A. A. Diab
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Marcos A. R. da Silva
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Guilherme F. S. R. Rocha
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Luis F. G. Noleto
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Andrea Rogolino
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - João P. de Mesquita
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
- Departamento de QuímicaUniversidade Federal dos Vales Jequitinhonha e MucuriRodovia MGT 367 – Km 583, n° 5000, Alto da JacubaDiamantinaMG39100Brazil
| | - Pablo Jiménez‐Calvo
- Department for Materials SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstrasse 7D‐91058ErlangenGermany
- Chemistry of Thin Film MaterialsFriedrich‐Alexander‐Universität Erlangen‐NürnbergIZNF, Cauerstraße 3D‐91058ErlangenGermany
| | - Ivo F. Teixeira
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| |
Collapse
|
3
|
Garcia‐Navarro J, Isaacs MA, Favaro M, Ren D, Ong W, Grätzel M, Jiménez‐Calvo P. Updates on Hydrogen Value Chain: A Strategic Roadmap. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300073. [PMID: 38868605 PMCID: PMC11165467 DOI: 10.1002/gch2.202300073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Indexed: 06/14/2024]
Abstract
A strategic roadmap for noncarbonized fuels is a global priority, and the reduction of carbon dioxide emissions is a key focus of the Paris Agreement to mitigate the effects of rising temperatures. In this context, hydrogen is a promising noncarbonized fuel, but the pace of its implementation will depend on the engineering advancements made at each step of its value chain. To accelerate its adoption, various applications of hydrogen across industries, transport, power, and building sectors have been identified, where it can be used as a feedstock, fuel, or energy carrier and storage. However, widespread usage of hydrogen will depend on its political, industrial, and social acceptance. It is essential to carefully assess the hydrogen value chain and compare it with existing solar technologies. The major challenge to widespread adoption of hydrogen is its cost as outlined in the roadmap for hydrogen. It needs to be produced at the levelized cost of hydrogen of less than $2 kg-1 to be competitive with the established process of steam methane reforming. Therefore, this review provides a comprehensive analysis of each step of the hydrogen value chain, outlining both the current challenges and recent advances.
Collapse
Affiliation(s)
| | - Mark A. Isaacs
- Department of ChemistryUniversity College London20 Gower StreetLondonWC1H 0AJUK
- HarwellXPSResearch Complex at HarwellRutherford Appleton LabDidcotOX11 0FAUK
| | - Marco Favaro
- Institute for Solar FuelsHelmholtz‐Zentrum Berlin für Materialien und Energy GmbHHahn‐Meitner‐Platz 114109BerlinGermany
| | - Dan Ren
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityWest Xianning Road 28Xi'an710049China
| | - Wee‐Jun Ong
- School of Energy and Chemical EngineeringXiamen University MalaysiaDarul EhsanSelangor43900Malaysia
- Center of Excellence for Nano Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaDarul EhsanSelangor43900Malaysia
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518057China
| | - Michael Grätzel
- Laboratory of Photonics and InterfacesInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Pablo Jiménez‐Calvo
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Present address:
Department of Materials Science WW4‐LKOUniversity of Erlangen‐NurembergMartensstraße 791058ErlangenGermany
| |
Collapse
|
4
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
5
|
Liu T, Zhu W, Wang N, Zhang K, Wen X, Xing Y, Li Y. Preparation of Structure Vacancy Defect Modified Diatomic-Layered g-C 3 N 4 Nanosheet with Enhanced Photocatalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302503. [PMID: 37344350 PMCID: PMC10460902 DOI: 10.1002/advs.202302503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Structure self-modification of graphitic carbon nitride (g-C3 N4 ) without the assistance of other species has attracted considerable attention. In this study, the structure vacancy defect modified diatomic-layered g-C3 N4 nanosheet (VCN) is synthesized by thermal treatment of bulk g-C3 N4 in a quartz tube with vacuum atmosphere that will generate a pressure-thermal dual driving force to boost the exfoliation and formation of structure vacancy for g-C3 N4 . The as-prepared VCN possesses a large specific surface area with a rich pore structure to provide more active centers for catalytic reactions. Furthermore, the as-formed special defect level in VCN sample can generate a higher exciton density at photoexcitation stage. Meanwhile, the photogenerated charges will rapidly transfer to VCN surface due to the greatly shortened transfer path resulting from the ultrathin structure (≈1.5 nm), which corresponds to two graphite carbon nitride atomic layers. In addition, the defect level alleviates the drawback of enlarged bandgap caused by the quantum size effect of nano-scaled g-C3 N4 , resulting in a well visible-light utilization. As a result, the VCN sample exhibits an excellent photocatalytic performance both in hydrogen production and photodegradation of typical antibiotics.
Collapse
Affiliation(s)
- Tian Liu
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Wei Zhu
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Ning Wang
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Keyu Zhang
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Xue Wen
- School of ChemistryXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yan Xing
- Jilin Provincial Key Laboratory of Advanced Energy MaterialsDepartment of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Yunfeng Li
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| |
Collapse
|
6
|
Isaacs M, Garcia‐Navarro J, Ong W, Jiménez‐Calvo P. Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal? GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200165. [PMID: 36910466 PMCID: PMC10000254 DOI: 10.1002/gch2.202200165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Indexed: 06/18/2023]
Abstract
Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar-driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large-scale examples. In order for solar-assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market.
Collapse
Affiliation(s)
- Mark Isaacs
- Department of ChemistryUniversity College London20 Gower StreetLondonWC1H 0AJUK
- HarwellXPSResearch Complex at HarwellRutherford Appleton LabDidcotOX11 0FAUK
| | | | - Wee‐Jun Ong
- School of Energy and Chemical EngineeringXiamen University MalaysiaSelangor Darul EhsanSelangor43900Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT)Xiamen University MalaysiaSelangor Darul EhsanSelangor43900Malaysia
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
- Shenzhen Research Institute of Xiamen UniversityShenzhen518057P. R. China
| | - Pablo Jiménez‐Calvo
- Department of Colloid ChemistryMax‐Planck‐Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|