1
|
Zhou N, Cui T, Lei Z, Wu P. Bioinspired learning and memory in ionogels through fast response and slow relaxation dynamics of ions. Nat Commun 2025; 16:4573. [PMID: 40379652 PMCID: PMC12084631 DOI: 10.1038/s41467-025-59944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/09/2025] [Indexed: 05/19/2025] Open
Abstract
Mimicking biological systems' sensing, learning, and memory capabilities in synthetic soft materials remains challenging. While significant progress has been made in sensory functions in ionogels, their learning and memory capabilities still lag behind biological systems. Here, we introduce cation-π interactions and a self-adaptable ionic-double-layer interface in bilayer ionogels to control ion transport. Fast ion response enables sensing and learning, while slow ion relaxation supports long-term memory. The ionogels achieve bioinspired functions, including sensitization, habituation, classical conditioning, and multimodal memory, with low energy consumption (0.06 pJ per spike). Additionally, the ionogels exhibit mechanical adaptability, such as stretchability, self-healing, and reconfigurability, making them ideal for soft robotics. Notably, the ionogels enable a robotic arm to mimic the selective capture behavior of a Venus flytrap. This work bridges the gap between biological intelligence and artificial systems, offering promising applications in bioinspired, energy-efficient sensing, learning, and memory.
Collapse
Affiliation(s)
- Ning Zhou
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China
| | - Ting Cui
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China
| | - Zhouyue Lei
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China.
| | - Peiyi Wu
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, China.
| |
Collapse
|
2
|
Xing D, Li W, Yu H, Wang Z, Li L, Cui Y, Zheng J, Zhou Y, Yan F. Ionic Liquid-Inspired Highly Aligned Fibrous Ionogel for Boosted Thermoelectric Harvesting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27049-27060. [PMID: 40298119 DOI: 10.1021/acsami.5c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ionogels represent promising materials for thermoelectric generators that efficiently convert low-grade heat into electricity due to their flexibility, stability, nonvolatility, and high thermopower. However, improving their thermoelectric performance presents challenges stemming from the complex interplay between ionic conductivity and thermal conduction. In this study, we developed a highly oriented nanofibrous ionogel membrane through the electrospinning of poly(ethylene oxide) (PEO) blended with a linear CO2-derived polycarbonate oligomer and an ionic liquid, ethylmethylimidazolium dicyanamide. The ionic liquid facilitated the formation of highly aligned nanofiber structures, which demonstrated superior ionic conductivity and reduced thermal conduction compared to the bulk counterparts, primarily due to the size effect inherent in nanofibers. Additionally, the incorporation of CO2-derived polycarbonate can increase the amorphous region of the PEO matrix and strengthen the ion-polymer interaction without compromising the orientation of the nanofibers thanks to its compatibility with PEO and its abundance of electron-withdrawing carbonate groups. This strategy effectively decouples ionic conductivity from thermal conduction, thereby enhancing the thermoelectric efficiency of ionogels. This advancement paves the way for the development of nanofibrous ionogels for use in flexible electronics and energy harvesting applications.
Collapse
Affiliation(s)
- Doudou Xing
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hao Yu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhihan Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Legeng Li
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongheng Cui
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiaming Zheng
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingjie Zhou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feng Yan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Lee CY, Hong SH, Liu CL. Recent Progress in Polymer Gel-Based Ionic Thermoelectric Devices: Materials, Methods, and Perspectives. Macromol Rapid Commun 2025; 46:e2400837. [PMID: 39895205 DOI: 10.1002/marc.202400837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Polymer gel-based ionic thermoelectric (i-TE) devices, including thermally chargeable capacitors and thermogalvanic cells, represent an innovative approach to sustainable energy harvesting by converting waste heat into electricity. This review provides a comprehensive overview of recent advancements in gel-based i-TE materials, focusing on their ionic Seebeck coefficients, the mechanisms underlying the thermodiffusion and thermogalvanic effects, and the various strategies employed to enhance their performance. Gel-based i-TE materials show great promise due to their flexibility, low cost, and suitability for flexible and wearable devices. However, challenges such as improving the ionic conductivity and stability of redox couples remain. Future directions include enhancing the efficiency of ionic-electronic coupling and developing more robust electrode materials to optimize the energy conversion efficiency in real-world applications.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Xu F, Li H, Li Y. Sea Cucumber-Inspired Polyurethane Demonstrating Record-Breaking Mechanical Properties in Room-Temperature Self-Healing Ionogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412317. [PMID: 39263735 DOI: 10.1002/adma.202412317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Practical applications of existing self-healing ionogels are often hindered by the trade-off between their mechanical robustness, ionic conductivity, and temperature requirements for their self-healing ability. Herein, this challenge is addressed by drawing inspiration from sea cucumber. A polyurethane containing multiple hydrogen-bond donors and acceptors is synthesized and used to fabricate room-temperature self-healing ionogels with excellent mechanical properties, high ionic conductivity, puncture resistance, and impact resistance. The hard segments of polyurethane, driven by multiple hydrogen bonds, coalesce into hard phase regions, which can efficiently dissipate energy through the reversible disruption and reformation of multiple hydrogen bonds. Consequently, the resulting ionogels exhibit record-high tensile strength and toughness compared to other room-temperature self-healing ionogels. Furthermore, the inherent reversibility of multiple hydrogen bonds within the hard phase regions allows the ionogels to spontaneously and efficiently self-heal damaged mechanical properties and ionic conductivity multiple times at room temperature. To underscore their application potential, these ionogels are employed as electrolytes in the fabrication of electrochromic devices, which exhibit excellent and stable electrochromic performance, repeatable healing ability, and satisfactory impact resistance. This study presents a novel strategy for the fabrication of ionogels with exceptional mechanical properties and room-temperature self-healing capability.
Collapse
Affiliation(s)
- Fuchang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongli Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Zhao W, Wu B, Lei Z, Wu P. Hydrogels with Differentiated Hydrogen-Bonding Networks for Bioinspired Stress Response. Angew Chem Int Ed Engl 2024; 63:e202400531. [PMID: 38546292 DOI: 10.1002/anie.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/19/2024]
Abstract
Stress response, an intricate and autonomously coordinated reaction in living organisms, holds a reversible, multi-path, and multi-state nature. However, existing stimuli-responsive materials often exhibit single-step and monotonous reactions due to the limited integration of structural components. Inspired by the cooperative interplay of extensor and flexor cells within Mimosa's pulvini, we present a hydrogel with differentiated hydrogen-bonding (H-bonding) networks designed to enable the biological stress response. Weak H-bonding domains resemble flexor cells, confined within a hydrophobic network stabilized by strong H-bonding clusters (acting like extensor cells). Under external force, strong H-bonding clusters are disrupted, facilitating water diffusion from the bottom layer and enabling transient expansion pressure gradient along the thickness direction. Subsequently, water diffuses upward, gradually equalizing the pressure, while weak H-bonding domains undergo cooperative elastic deformation. Consequently, the hydrogel autonomously undergoes a sequence of reversible and pluralistic motion responses, similar to Mimosa's touch-triggered stress response. Intriguingly, it exhibits stress-dependent color shifts under polarized light, highlighting its potential for applications in time-sensitive "double-lock" information encryption systems. This work achieves the coordinated stress response inspired by natural tissues using a simple hydrogel, paving the way for substantial advancements in the development of intelligent soft robots.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS), Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr, Garching, 185748, Germany
| | - Zhouyue Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Zhu W, Wu B, Lei Z, Wu P. Piezoionic Elastomers by Phase and Interface Engineering for High-Performance Energy-Harvesting Ionotronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313127. [PMID: 38275214 DOI: 10.1002/adma.202313127] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Piezoionic materials play a pivotal role in energy-harvesting ionotronics. However, a persistent challenge lies in balancing the structural requirements for voltage generation, current conduction, and mechanical adaptability. The conventional approach of employing crystalline heterostructures for stress concentration and localized charge separation, while effective for voltage generation, often compromises the stretchability and long-range charge transport found in homogeneous quasisolid states. Herein, phase and interface engineering strategy is introduced to address this dilemma and a piezoionic elastomer is presented that seamlessly integrates ionic liquids and ionic plastic crystals, forming a finely tuned microphase-separated structure with an intermediate phase. This approach promotes charge separation via stress concentration among hard phases while leveraging the high ionic charge mobility in soft and intermediate phases. Impressively, the elastomer achieves an extraordinary piezoionic coefficient of about 6.0 mV kPa-1, a more than threefold improvement over current hydrogels and ionogels. The resulting power density of 1.3 µW cm-3 sets a new benchmark, exceeding that of state-of-the-art piezoionic gels. Notably, this elastomer combines outstanding stretchability, remarkable toughness, and rapid self-healing capability, underscoring its potential for real-world applications. This work may represent a stride toward mechanically robust energy harvesting systems and provide insights into ionotronic systems for human-machine interaction.
Collapse
Affiliation(s)
- Weiyan Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Zhouyue Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Luo X, Chen C, He Z, Wang M, Pan K, Dong X, Li Z, Liu B, Zhang Z, Wu Y, Ban C, Chen R, Zhang D, Wang K, Wang Q, Li J, Lu G, Liu J, Liu Z, Huang W. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat Commun 2024; 15:3086. [PMID: 38600063 PMCID: PMC11006927 DOI: 10.1038/s41467-024-47374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.
Collapse
Affiliation(s)
- Xu Luo
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chen Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Min Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xuemei Dong
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Bin Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zicheng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chaoyi Ban
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Rong Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dengfeng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Junyue Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
8
|
Fan X, Feng W, Wang S, Chen Y, Zheng WJ, Yan J. Fluorine-Containing Ionogels with Stretchable, Solvent-Resistant, Wide Temperature Tolerance, and Transparent Properties for Ionic Conductors. Polymers (Basel) 2024; 16:1013. [PMID: 38611271 PMCID: PMC11014108 DOI: 10.3390/polym16071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Stretchable ionogels, as soft ion-conducting materials, have generated significant interest. However, the integration of multiple functions into a single ionogel, including temperature tolerance, self-adhesiveness, and stability in diverse environments, remains a challenge. In this study, a new class of fluorine-containing ionogels was synthesized through photo-initiated copolymerization of fluorinated hexafluorobutyl methacrylate and butyl acrylate in a fluorinated ionic liquid 1-butyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide. The resulting ionogels demonstrate good stretchability with a fracture strain of ~1300%. Owing to the advantages of the fluorinated network and the ionic liquid, the ionogels show excellent stability in air and vacuum, as well as in various solvent media such as water, sodium chloride solution, and hexane. Additionally, the ionogels display impressive wide temperature tolerance, functioning effectively within a wide temperature range from -60 to 350 °C. Moreover, due to their adhesive properties, the ionogels can be easily attached to various substrates, including plastic, rubber, steel, and glass. Sensors made of these ionogels reliably respond to repetitive tensile-release motion and finger bending in both air and underwater. These findings suggest that the developed ionogels hold great promise for application in wearable devices.
Collapse
Affiliation(s)
| | | | | | | | - Wen Jiang Zheng
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China (Y.C.)
| | | |
Collapse
|
9
|
Lee CY, Lin YT, Hong SH, Wang CH, Jeng US, Tung SH, Liu CL. Mixed Ionic-Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56072-56083. [PMID: 37982689 DOI: 10.1021/acsami.3c09934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Mixed ionic-electronic conducting (MIEC) thermoelectric (TE) materials offer higher ionic conductivity and ionic Seebeck coefficient compared to those of purely ionic-conducting TE materials. These characteristics make them suitable for direct use in thermoelectric generators (TEGs) as the charge carriers can be effectively transported from one electrode to the other via the external circuit. In the present study, MIEC hydrogels are fabricated via the chemical cross-linking of polyacrylamide (PAAM) and polydopamine (PDA) to form a double network. In addition, electrically conducting carboxylated carbon nanotubes (CNT-COOH) are dispersed evenly within the hydrogel via sonication and interaction with the PDA. Moreover, the electrical properties of the hydrogel are further improved via the in situ polymerization of polyaniline (PANI). The presence of CNT-COOH facilitates the ionic conductivity and enhances the ionic Seebeck coefficient via ionic-electronic interactions between sodium ions and carboxyl groups on CNT-COOH, which can be observed in X-ray photoelectron spectroscopy results, thereby promoting the charge transport properties. As a result, the optimum device exhibits a remarkable ionic conductivity of 175.3 mS cm-1 and a high ionic Seebeck coefficient of 18.6 mV K-1, giving an ionic power factor (PFi) of 6.06 mW m-1 K-2 with a correspondingly impressive ionic figure of merit (ZTi) of 2.65. These values represent significant achievements within the field of gel-state organic TE materials. Finally, a wearable module is fabricated by embedding the PAAM/PDA/CNT-COOH/PANI hydrogel into a poly(dimethylsiloxane) mold. This configuration yields a high power density of 171.4 mW m-2, thus highlighting the considerable potential for manufacturing TEGs for wearable devices capable of harnessing waste heat.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ting Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Zhao W, Zheng Y, Jiang M, Sun T, Huang A, Wang L, Jiang W, Zhang Q. Exceptional n-type thermoelectric ionogels enabled by metal coordination and ion-selective association. SCIENCE ADVANCES 2023; 9:eadk2098. [PMID: 37878706 PMCID: PMC10599631 DOI: 10.1126/sciadv.adk2098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Ionic liquid-based ionogels emerge as promising candidates for efficient ionic thermoelectric conversion due to their quasi-solid state, giant thermopower, high flexibility, and good stability. P-type ionogels have shown impressive performance; however, the development of n-type ionogels lags behind. Here, an n-type ionogel consisting of polyethylene oxide (PEO), lithium salt, and ionic liquid is developed. Strong coordination of lithium ion with ether oxygen and the anion-rich clusters generated by ion-preferential association promote rapid transport of the anions and boost Eastman entropy change, resulting in a huge negative ionic Seebeck coefficient (-15 millivolts per kelvin) and a high electrical conductivity (1.86 millisiemens per centimeter) at 50% relative humidity. Moreover, dynamic and reversible interactions among the ternary mixtures endow the ionogel with fast autonomous self-healing capability and green recyclability. All PEO-based ionic thermoelectric modules are fabricated, which exhibits outstanding thermal responses (-80 millivolts per kelvin for three p-n pairs), demonstrating great potential for low-grade energy harvesting and ultrasensitive thermal sensing.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiwei Zheng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Meng Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tingting Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Aibin Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Institute of Functional Materials, Donghua University, Shanghai 201620, China
| | - Qihao Zhang
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, Dresden 01069, Germany
| |
Collapse
|