1
|
Wu M, Torrence I, Liu Y, Wu J, Ge R, Ma K, Liu D, Ren J, Fan S, Ma M, Siegel JB, Tantillo DJ, Lin W, Fan A. Characterization and Engineering of a Bisabolene Synthase Reveal an Unusual Hydride Shift and Key Residues Critical for Mono-, Bi-, and Tricyclic Sesquiterpenes Formation. J Am Chem Soc 2025; 147:10413-10422. [PMID: 40071547 DOI: 10.1021/jacs.4c17818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Sesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene 6 with a unique saturated terminal pendant isopentane. Extensive evidence from isotope labeling experiments, crystal structures of SydA and its variant, quantum chemical calculations, and mutagenesis experiments reveal a plausible mechanism for the formation of 6 involving an unusual 1,7-hydride shift, which may be a key branchpoint for monocyclic, bicyclic, and tricyclic products. Structure-based engineering resulted in SydA variants that promote different reaction pathways, leading to the production of bicyclic α-cuprenene and (+)-β-chamigrene and tricyclic 7-epi-β-cedrene and β-microbiotene. These findings not only reveal a new bisabolene and its biosynthesis but also provide insights into the molecular basis of the hydride shifts and cyclizations, which pave the way for engineering STSs to produce complex terpenoid products.
Collapse
Affiliation(s)
- Mengyue Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ian Torrence
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
| | - Yuanning Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Ningbo 315832 Zhejiang, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Fan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Justin B Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States
- Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, Untied States
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Ningbo 315832 Zhejiang, China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Dou X, Li M, Ge Y, Yin G, Wang X, Xue S, Jia B, Zi L, Wan H, Xi Y, Chi Z, Kong F. Photoproduction of Aviation Fuel β-Caryophyllene From the Eukaryotic Green Microalga Chlamydomonas reinhardtii. Biotechnol Bioeng 2025; 122:698-709. [PMID: 39648338 DOI: 10.1002/bit.28898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
β-caryophyllene is a plant-derived sesquiterpene and is regarded as a promising ingredient for aviation fuels. Microalgae can convert CO2 into energy-rich bioproducts through photosynthesis, making them potential platforms for the sustainable production of sesquiterpenes. However, heterologous sesquiterpene engineering in microalgae is still in its infancy, and β-caryophyllene production in eukaryotic photosynthetic microorganisms has not been reported. In this study, we succeeded in producing β-caryophyllene in the model eukaryotic microalga Chlamydomonas reinhardtii by heterologously expressing a β-caryophyllene synthase (QHS). Furthermore, overexpressing the key enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway in the QHS-expressing strain (QHS-DXS-HDR-18) resulted in a 17-fold higher β-caryophyllene production compared to the single expression of QHS (QHS-28). Additionally, when isopentenyl diphosphate isomerase (CrIDI) was overexpressed, the β-caryophyllene production was up to 480.6 μg/L in QHS-DXS-HDR-CrIDI-16 and increased by 1.8-fold compared to the parental strain QHS-DXS-HDR-18. Under photoautotrophic and photomixotrophic conditions in photobioreactors, the β-caryophyllene production in QHS-DXS-HDR-CrIDI-16 reached 854.7 and 1016.8 μg/L, respectively. Noticeably, all the β-caryophyllene-producing strains generated in this study did not exhibit adverse effects on cell growth and photosynthesis activity compared to the untransformed strain. This study demonstrates the first successful attempt to produce β-caryophyllene in the eukaryotic microalga C. reinhardtii and develops a novel strategy for increasing sesquiterpene production in eukaryotic photosynthetic microorganisms.
Collapse
Affiliation(s)
- Xiaotan Dou
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Mengjie Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yunlong Ge
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Gerui Yin
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xinyu Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Song Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Baolin Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Lihan Zi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian, Liaoning, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhanyou Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Fantao Kong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
3
|
Nie S, Wang S, Chen R, Ge M, Yan X, Qiao J. Catalytic Mechanism and Heterologous Biosynthesis Application of Sesquiterpene Synthases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6871-6888. [PMID: 38526460 DOI: 10.1021/acs.jafc.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Sesquiterpenes comprise a diverse group of natural products with a wide range of applications in cosmetics, food, medicine, agriculture, and biofuels. Heterologous biosynthesis is increasingly employed for sesquiterpene production, aiming to overcome the limitations associated with chemical synthesis and natural extraction. Sesquiterpene synthases (STSs) play a crucial role in the heterologous biosynthesis of sesquiterpene. Under the catalysis of STSs, over 300 skeletons are produced through various cyclization processes (C1-C10 closure, C1-C11 closure, C1-C6 closure, and C1-C7 closure), which are responsible for the diversity of sesquiterpenes. According to the cyclization types, we gave an overview of advances in understanding the mechanism of STSs cyclization from the aspects of protein crystal structures and site-directed mutagenesis. We also summarized the applications of engineering STSs in the heterologous biosynthesis of sesquiterpene. Finally, the bottlenecks and potential research directions related to the STSs cyclization mechanism and application of modified STSs were presented.
Collapse
Affiliation(s)
- Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Mingyue Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| |
Collapse
|
4
|
Liu J, Lin M, Han P, Yao G, Jiang H. Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes. Microorganisms 2024; 12:706. [PMID: 38674649 PMCID: PMC11052473 DOI: 10.3390/microorganisms12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
High-energy-density liquid fuels (HED fuels) are essential for volume-limited aerospace vehicles and could serve as energetic additives for conventional fuels. Terpene-derived HED biofuel is an important research field for green fuel synthesis. The direct extraction of terpenes from natural plants is environmentally unfriendly and costly. Designing efficient synthetic pathways in microorganisms to achieve high yields of terpenes shows great potential for the application of terpene-derived fuels. This review provides an overview of the current research progress of terpene-derived HED fuels, surveying terpene fuel properties and the current status of biosynthesis. Additionally, we systematically summarize the engineering strategies for biosynthesizing terpenes, including mining and engineering terpene synthases, optimizing metabolic pathways and cell-level optimization, such as the subcellular localization of terpene synthesis and adaptive evolution. This article will be helpful in providing insight into better developing terpene-derived HED fuels.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Man Lin
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| |
Collapse
|
5
|
Chen C, Yao G, Wang F, Bao S, Wan X, Han P, Wang K, Song T, Jiang H. Identification of a (+)-cubenene synthase from filamentous fungi Acremonium chrysogenum. Biochem Biophys Res Commun 2023; 677:119-125. [PMID: 37573766 DOI: 10.1016/j.bbrc.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Sesquiterpene synthases convert farnesyl diphosphate into various sesquiterpenes, which find wide applications in the food, cosmetics and pharmaceutical industries. Although numerous putative sesquiterpene synthases have been identified in fungal genomes, many lack biochemical characterization. In this study, we identified a putative terpene synthase AcTPS3 from Acremonium chrysogenum. Through sequence analysis and in vitro enzyme assay, AcTPS3 was identified as a sesquiterpene synthase. To obtain sufficient product for NMR testing, a metabolic engineered Saccharomyces cerevisiae was constructed to overproduce the product of AcTPS3. The major product of AcTPS3 was identified as (+)-cubenene (55.46%) by GC-MS and NMR. Thus, AcTPS3 was confirmed as (+)-cubenene synthase, which is the first report of (+)-cubenene synthase. The optimized S. cerevisiae strain achieved a biosynthesis titer of 597.3 mg/L, the highest reported for (+)-cubenene synthesis.
Collapse
Affiliation(s)
- Chang Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, People's Republic of China.
| |
Collapse
|
6
|
Wang S, Chen R, Yuan L, Zhang C, Liang D, Qiao J. Molecular and Functional Analyses of Characterized Sesquiterpene Synthases in Mushroom-Forming Fungi. J Fungi (Basel) 2023; 9:1017. [PMID: 37888273 PMCID: PMC10608071 DOI: 10.3390/jof9101017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Sesquiterpenes are a type of abundant natural product with widespread applications in several industries. They are biosynthesized by sesquiterpene synthases (STSs). As valuable and abundant biological resources, mushroom-forming fungi are rich in new sesquiterpenes and STSs, which remain largely unexploited. In the present study, we collected information on 172 STSs from mushroom-forming fungi with experimentally characterized products from the literature and sorted them to develop a dataset. Furthermore, we analyzed and discussed the phylogenetic tree, catalytic products, and conserved motifs of STSs. Phylogenetic analysis revealed that the STSs were clustered into four clades. Furthermore, their cyclization reaction mechanism was divided into four corresponding categories. This database was used to predict 12 putative STS genes from the edible fungi Flammulina velutipes. Finally, three FvSTSs were selected to experimentally characterize their functions. FvSTS03 predominantly produced Δ-cadinol and FvSTS08 synthesized β-barbatene as the main product; these findings were consistent with those of the functional prediction analysis. A product titer of 78.8 mg/L β-barbatene was achieved in Saccharomyces cerevisiae via metabolic engineering. Our study findings will help screen or design STSs from fungi with specific product profiles as functional elements for applications in synthetic biology.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Chenyang Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China;
| | - Dongmei Liang
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (S.W.); (R.C.); (L.Y.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China;
| |
Collapse
|
7
|
Wang S, Zhan C, Nie S, Tian D, Lu J, Wen M, Qiao J, Zhu H, Caiyin Q. Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12452-12461. [PMID: 37574876 DOI: 10.1021/acs.jafc.3c03677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
α-Farnesene, a type of acyclic sesquiterpene, is an important raw material in agriculture, aircraft fuel, and the chemical industry. In this study, we constructed an efficient α-farnesene-producing yeast cell factory by combining enzyme and metabolic engineering strategies. First, we screened different plants for α-farnesene synthase (AFS) with the best activity and found that AFS from Camellia sinensis (CsAFS) exhibited the most efficient α-farnesene production in Saccharomyces cerevisiae 4741. Second, the metabolic flux of the mevalonate pathway was increased to improve the supply of the precursor farnesyl pyrophosphate. Third, inducing site-directed mutagenesis in CsAFS, the CsAFSW281C variant was obtained, which considerably increased α-farnesene production. Fourth, the N-terminal serine-lysine-isoleucine-lysine (SKIK) tag was introduced to construct the SKIK∼CsAFSW281C variant, which further increased α-farnesene production to 2.8 g/L in shake-flask cultures. Finally, the α-farnesene titer of 28.3 g/L in S. cerevisiae was obtained by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Daoguang Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Juane Lu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|