1
|
Moulick S, Maity D, Samanta G, Mandal K, Pal AN. Charge noise in low Schottky barrier multilayer tellurium field-effect transistors. NANOSCALE 2025; 17:2259-2268. [PMID: 39663927 DOI: 10.1039/d4nr04176c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Creating van der Waals (vdW) homojunction devices requires materials with narrow bandgaps and high carrier mobilities for bipolar transport, which are crucial for constructing fundamental building blocks like diodes and transistors in a 2D architecture. Following the recent discovery of elemental 2D tellurium, here, we systematically investigate the electrical transport and flicker noise of hydrothermally grown multilayer tellurium field effect transistors. While the devices exhibit a dominant p-type behavior with high hole mobilities up to ∼242 cm2 V-1 s-1 at room temperature and almost linear current-voltage characteristics down to 77 K, ambipolar behavior was observed in some cases. Through a detailed temperature dependent transport characterization, we estimated the Schottky barrier height as low as ∼20 meV. The good electrical contacts further facilitate the observation of metal-to-insulator transition at low temperature, being an intrinsic property of the tellurium channel rather than the contacts. Finally, detailed low frequency noise spectroscopy shows dominant 1/f type behavior across the entire gate-voltage range. The origin of the observed noise can be described by Hooge's mobility fluctuation model, rather than the carrier number fluctuations due to interfacial traps. We anticipate that such analysis will contribute to the development of futuristic low-noise devices using tellurium.
Collapse
Affiliation(s)
- Shubhadip Moulick
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Dipanjan Maity
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Rachenahalli Lake Rd, Jakkur, Bengaluru, Karnataka 560064, India
| | - Gaurab Samanta
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Kalyan Mandal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Atindra Nath Pal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
2
|
Yang Z, Peng X, Wang J, Lin J, Zhang C, Tang B, Zhang J, Yang W. Lowering the Schottky Barrier Height by Quasi-van der Waals Contacts for High-Performance p-Type MoTe 2 Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676636 DOI: 10.1021/acsami.4c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) offer advantages over traditional silicon in future electronics but are hampered by the prominent high contact resistance of metal-TMD interfaces, especially for p-type TMDs. Here, we present high-performance p-type MoTe2 field-effect transistors via a nondestructive van der Waals (vdW) transfer process, establishing low contact resistance between the 2D MoTe2 semiconductor and the PtTe2 semimetal. The integration of PtTe2 as contacts in MoTe2 field-effect transistors leads to significantly improved electrical characteristics compared to conventional metal contacts, evidenced by a mobility increase to 80 cm2 V-1 s-1, an on-state current rise to 5.0 μA/μm, and a reduction in Schottky barrier height (SBH) to 48 meV. Such a low SBH in quasi-van der Waals contacts can be assigned to the low electrical resistivity of PtTe2 and the high efficiency of carrier injection at the 2D semimetal/2D semiconductor interfaces. Imaging via transmission electron microscopy reveals that the 2D semimetal/two-dimensional semiconductor interfaces are atomically flat and exceptionally clean. This interface engineering strategy could enable low-resistance contacts based on vdW architectures in a facile manner, providing opportunities for 2D materials for next-generation optoelectronics and electronics.
Collapse
Affiliation(s)
- Ze Yang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Xingkun Peng
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jialong Lin
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Chuanlun Zhang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Baoshan Tang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jie Zhang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Weifeng Yang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Song W, Dai J, Zou F, Niu Y, Cong Y, Li Q, Pan Y. Tunable ohmic van der Waals-type contacts in monolayer C 3N field-effect transistors. RSC Adv 2024; 14:3820-3833. [PMID: 38274169 PMCID: PMC10808999 DOI: 10.1039/d3ra08338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Monolayer (ML) C3N, a novel two-dimensional flat crystalline material with a suitable bandgap and excellent carrier mobility, is a prospective channel material candidate for next-generation field-effect transistors (FETs). The contact properties of ML C3N-metal interfaces based on FETs have been comprehensively investigated with metal electrodes (graphene, Ti2C(OH/F)2, Zr2C(OH/F)2, Au, Ni, Pd, and Pt) by employing ab initio electronic structure calculations and quantum transport simulations. The contact properties of ML C3N are isotropic along the armchair and zigzag directions except for the case of Au. ML C3N establishes vertical van der Waals-type ohmic contacts with all the calculated metals except for Zr2CF2. The ML C3N-graphene, -Zr2CF2, -Ti2CF2, -Pt, -Pd, and -Ni interfaces form p-type lateral ohmic contacts, while the ML C3N-Ti2C(OH)2 and -Zr2C(OH)2 interfaces form n-type lateral ohmic contacts. The ohmic contact polarity can be regulated by changing the functional groups of the 2D MXene electrodes. These results provide theoretical insights into the characteristics of ML C3N-metal interfaces, which are important for choosing suitable electrodes and the design of ML C3N devices.
Collapse
Affiliation(s)
- Weiqi Song
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao China
| | - Jingrou Dai
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Feihu Zou
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao China
| | - Yize Niu
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao China
| | - Yao Cong
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Qiang Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao China
| | - Yuanyuan Pan
- College of Physics, Center for Marine Observation and Communications, Qingdao University Qingdao China
| |
Collapse
|
4
|
Ngo TD, Huynh T, Moon I, Taniguchi T, Watanabe K, Choi MS, Yoo WJ. Self-Aligned Top-Gate Structure in High-Performance 2D p-FETs via van der Waals Integration and Contact Spacer Doping. NANO LETTERS 2023. [PMID: 37983163 DOI: 10.1021/acs.nanolett.3c04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The potential of 2D materials in future CMOS technology is hindered by the lack of high-performance p-type field effect transistors (p-FETs). While utilization of the top-gate (TG) structure with a p-doped spacer area offers a solution to this challenge, the design and device processing to form gate stacks pose serious challenges in realization of ideal p-FETs and PMOS inverters. This study presents a novel approach to address these challenges by fabricating lateral p+-p-p+ junction WSe2 FETs with self-aligned TG stacks in which desired junction is formed by van der Waals (vdW) integration and selective oxygen plasma-doping into spacer regions. The exceptional electrostatic controllability with a high on/off current ratio and small subthreshold swing (SS) of plasma doped p-FETs is achieved with the self-aligned metal/hBN gate stacks. To demonstrate the effectiveness of our approach, we construct a PMOS inverter using this device architecture, which exhibits a remarkably low power consumption of approximately 4.5 nW.
Collapse
Affiliation(s)
- Tien Dat Ngo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Tuyen Huynh
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Inyong Moon
- Quantum Information Research Support Center, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Takashi Taniguchi
- International Centrer for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki 305-0044, Japan
| | - Min Sup Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|