1
|
Xiao J, Zhang X, Wang Z. Sandwiched Copper Foam with Symmetrical Wettability for Direction-Independent Fog Collection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6389-6397. [PMID: 40014429 DOI: 10.1021/acs.langmuir.5c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The Janus membrane demonstrates its advantages in timely drainage and directional water transport properties for efficient fog water collection, which helps alleviate global water shortages. However, the direction-dependent collection and inefficient directional water transport properties limit its widespread application. Herein, a single-layered sandwich-structured copper foam that features a superhydrophilic inner layer and double-deck external hydrophobic layers is prepared by a simple method. This innovative architecture demonstrates direction-independent fog harvesting capabilities through the synergistic integration of symmetric wettability gradients and robust structural integrity. Such sandwiched copper foam shows its superiority in rapid directional water transport and timely drainage properties which can quickly regenerate the fresh outer hydrophobic surface as well as the direction-independent unidirectional water transport properties. The rapid directional water transport property combined with the timely drainage of the sandwiched copper foam benefits the continuous better performance of fog collection compared to that of conventional Janus membranes. Clearly, the development of such sandwiched copper foam with a direction-independent unidirectional water transport property enables the effective and durable collection of fog droplets in environments with dynamically changeable winds. Overall, this work provides a new idea for the fabrication of advanced materials for direction-independent fog collection.
Collapse
Affiliation(s)
- Jinyue Xiao
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Xin Zhang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| |
Collapse
|
2
|
Li M, Xie S, Tian G, Guo Z. Biomimetic Fog Harvesting with Synergistic Effects of Multiple Driving Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4369-4378. [PMID: 39924978 DOI: 10.1021/acs.langmuir.4c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Water scarcity is a pressing global issue, prompting researchers to explore innovative solutions, such as harvesting water from the air. Drawing inspiration from natural materials like spider silk and cactus spines, this work has focused on developing structures with mixed wettability gradients to harvest fog from the environment. The hybrid wetting design, combining hydrophilic and hydrophobic properties along with a 3D structure, enhances the capture of water droplets by increasing the contact area with fog flow. This novel approach shows great potential in improving water capture efficiency. Besides, the wettability gradient facilitates the transport and rapid removal of water droplets due to the combined effects of gravity, the wettability driving force, and the Laplacian pressure. By emulating nature's water harvesting mechanisms, a generalizable technology is developed in this work that promises to significantly improve water collection from the air, particularly in arid and semiarid regions.
Collapse
Affiliation(s)
- Mengwei Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Shangzhen Xie
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Guangyi Tian
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
3
|
Bai H, Zhao T, Cao M. Interfacial fluid manipulation with bioinspired strategies: special wettability and asymmetric structures. Chem Soc Rev 2025; 54:1733-1784. [PMID: 39745100 DOI: 10.1039/d4cs01073f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer via sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, etc. Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required. In this review, we systematically introduce development and highlight the state-of-the-art progress of bioinspired FMIs. Firstly, the biological prototype and development timeline are presented, and the underlying mechanism of on-surface fluid control on versatile structures is analyzed. Secondly, the definition and classification of FMIs as well as the strategy for controlling fluid/interface interaction are discussed. Thirdly, emergent applications of FMIs in practical scenarios including fog/vapor collection, fluid diodes, interfacial catalysis, etc. are presented. Furthermore, the challenges and prospects of interfacial liquid manipulation are concluded. We envision that this review should provide guidance for the incorporation of FMIs into suitable situations, which enlightens interdisciplinary research and practical applications in the fields of interface chemistry, materials design, bionic science, fluid dynamics, etc.
Collapse
Affiliation(s)
- Haoyu Bai
- School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
| | - Tianhong Zhao
- School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
| | - Moyuan Cao
- School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
- Tianjin key laboratory of metal and molecule-based material chemistry, Nankai university, Tianjin 300192, P. R. China
- National institute for advanced materials, Nankai university, Tianjin 300350, P. R. China
| |
Collapse
|
4
|
Min S, Xu Z, Huang Y, Wu X, Zhan T, Yu X, Wang H, Xu B. 3D Wetting Gradient Janus Sports Bras for Efficient Sweat Removal: A Strategy to Improve Women's Sports Comfort and Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404137. [PMID: 38990076 DOI: 10.1002/smll.202404137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Developing Janus fabrics with excellent one-way sweat transport capacity is an attractive way for providing comfort sensation and protecting the health during exercise. In this work, a 3D wetting gradient Janus fabric (3DWGJF) is first proposed to address the issue of excessive sweat accumulation in women's breasts, followed by integration with a sponge pad to form a 3D wetting gradient Janus sports bra (3DWGJSB). The 3D wetting gradient enables the prepared fabric to control the horizontal migration of sweat in one-way mode (x/y directions) and then unidirectionally penetrate downward (z direction), finally keeping the water content on the inner side of 3DWGJF (skin side) at ≈0%. In addition, the prepared 3DWGJF has good water vapor transmittance rate (WVTR: 0.0409 g cm-2 h-1) and an excellent water evaporation rate (0.4704 g h-1). Due to the high adhesion of transfer prints to the fabrics and their excellent mechanical properties, the 3DWGJF is remarkably durable and capable of withstanding over 500 laundering cycles and 400 abrasion cycles. This work may inspire the design and fabrication of next-generation moisture management fabrics with an effective sweat-removal function for women's health.
Collapse
Affiliation(s)
- Shuqiang Min
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yange Huang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xianchang Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tonghuan Zhan
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaohua Yu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - He Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
5
|
Miao J, Tsang ACH. Reconfigurability-Encoded Hierarchical Rectifiers for Versatile 3D Liquid Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405641. [PMID: 39072942 PMCID: PMC11497013 DOI: 10.1002/advs.202405641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Manipulating small-volume liquids is crucial in natural processes and industrial applications. However, most liquid manipulation technologies involve complex energy inputs or non-adjustable wetting gradient surfaces. Here, a simple and adjustable 3D liquid manipulation paradigm is reported to control liquid behaviors by coupling liquid-air-solid interfacial energy with programmable magnetic fields. This paradigm centers around a hierarchical rectifier with magnetized microratchets, using Laplace pressure asymmetry to enable multimodal directional steering of various surface tension liquids (23-72 mN m-1). The scale-dependent effect in microratchet design shows its superiority in handling small-volume liquids across three orders of magnitude (100-103 µL). Under programmed magnetic fields, the rectifier can reconfigure its morphology to harness interfacial energy to exhibit richer liquid behaviors without dynamic real-time control. Reconfigured rectifiers show improved rectification performance in the inertia-dominant fluid regime, i.e., a remarkable 2000-fold increase in the critical Weber number for pure ethanol. Moreover, the rectifier's switchable reconfigurations offer flexible control over liquid transport directions and spatiotemporally controllable 3D liquid manipulation reminiscent of inchworm motions. This scalable liquid manipulation paradigm promotes versatile engineering and biochemistry applications, e.g., portable liquid purity testing (screening resolution <1 mN m-1), logical open-channel microfluidics, and automated chemical reaction platforms.
Collapse
Affiliation(s)
- Jiaqi Miao
- Department of Mechanical EngineeringThe University of Hong KongPokfulamHong Kong999077China
| | - Alan C. H. Tsang
- Department of Mechanical EngineeringThe University of Hong KongPokfulamHong Kong999077China
| |
Collapse
|
6
|
Tian G, Fu C, Guo Z. Biomimetic Fog Collector with Hybrid and Gradient Wettabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43694-43703. [PMID: 39114959 DOI: 10.1021/acsami.4c06032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Water scarcity is a global problem and collecting water from the air is a viable solution to this crisis. Inspired by Namib Desert beetle, leaf venation and spider silk, we designed an integrated biomimetic system with hybrid wettability and wettability gradient. The hybrid hydrophilic-hydrophobic wettability design that bionomics desert beetle's back can construct a three-dimensional topography with a water layer on the surface, expanding the contact area with the fog flow and thus improving the droplet trapping efficiency. The venation-like structure with wettability gradient not only provides a planned path for water transportation, but also accelerates water removal under the synergistic effect of gravity and wettability driving force, thus further improving the surface regeneration rate. The collector combines droplet capture, coalescence, transportation, separation, and storage capabilities, which provides new ideas for the design of future high-efficiency fog collectors.
Collapse
Affiliation(s)
- Guangyi Tian
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Changhui Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Chen Y, Zheng W, Xia Y, Zhang L, Cao Y, Li S, Lu W, Liu C, Fu S. Implantable Resistive Strain Sensor-Decorated Colloidal Crystal Hydrogel Catheter for Intestinal Tract Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21736-21745. [PMID: 38630008 DOI: 10.1021/acsami.4c04817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In the quest to develop advanced monitoring systems for intestinal peristaltic stress, this study introduces a groundbreaking approach inspired by nature's sensory networks. By the integration of novel materials and innovative manufacturing techniques, a multifunctional Janus hydrogel patch has been engineered. This unique patch not only demonstrates superior stress-sensing capabilities in the intricate intestinal environment but also enables adhesion to wet tissue surfaces. This achievement opens new avenues for real-time physiological monitoring and potential therapeutic interventions in the realm of gastrointestinal health.
Collapse
Affiliation(s)
- Yufei Chen
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Wei Zheng
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Hubei 41300, China
| | - Youchen Xia
- Digestive Endoscopy Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lihao Zhang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Yue Cao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Sunlong Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Weipeng Lu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Sengwang Fu
- Digestive Endoscopy Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
8
|
Long Z, Yu C, Cao M, Ma J, Jiang L. Bioinspired Gas Manipulation for Regulating Multiphase Interactions in Electrochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312179. [PMID: 38388808 DOI: 10.1002/adma.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Indexed: 02/24/2024]
Abstract
The manipulation of gas in multiphase interactions plays a crucial role in various electrochemical processes. Inspired by nature, researchers have explored bioinspired strategies for regulating these interactions, leading to remarkable advancements in design, mechanism, and applications. This paper provides a comprehensive overview of bioinspired gas manipulation in electrochemistry. It traces the evolution of gas manipulation in gas-involving electrochemical reactions, highlighting the key milestones and breakthroughs achieved thus far. The paper then delves into the design principles and underlying mechanisms of superaerophobic and (super)aerophilic electrodes, as well as asymmetric electrodes. Furthermore, the applications of bioinspired gas manipulation in hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), and other gas-involving electrochemical reactions are summarized. The promising prospects and future directions in advancing multiphase interactions through gas manipulation are also discussed.
Collapse
Affiliation(s)
- Zhiyun Long
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Li D, Li C, Zhang M, Xiao M, Li J, Yang Z, Fu Q, Wang P, Yu K, Pan Y. Advanced Fog Harvesting Method by Coupling Plasma and Micro/Nano Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10984-10995. [PMID: 38364209 DOI: 10.1021/acsami.3c17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Harvesting fog is a potential and effective way to alleviate the crisis of water resource shortage. A highly efficient and economical fog harvesting method has always been a global and common goal. Here, a promising fog harvesting method by coupling plasma and micro/nano materials is proposed, which can achieve 93% fog collection efficiency with consuming power of only 0.76 W/0.04 m2. The basic method is to utilize nanoparticles to decorate both the discharge electrode and the collecting electrode of the micro/nano electrostatic fog collector. For the discharge electrode, the nanoparticles can achieve an order of magnitude higher electric field strength and a 28.6% decrease in the operating voltage (14 kV decreases to 10 kV). For the collecting electrode, a novel composite structure of hydrophobic/hydrophilic (HB/HL) is proposed. The core advantage is the directional droplet transport at the junction of HB and HL caused by surface tension can adjust the accumulated droplets on the two sides, which avoids the droplet residue and mesh blockage in the general structure. This technology provides an innovative approach for the collection of microdroplets and a new design idea for the fog collector to deal with the water crisis.
Collapse
Affiliation(s)
- Dingchen Li
- International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chuan Li
- International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Zhang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Menghan Xiao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiawei Li
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiwen Yang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qixiong Fu
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengyu Wang
- Digital Grid Research Institute, China Southern Power Grid, Guangzhou 510670, China
| | - Kexun Yu
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Pan
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical Engineering and Electronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Manzano VE, D'Accorso NB. From the Lab to the Field: Organic Materials for Industrial Applications and Environmental Remediation. Chempluschem 2023; 88:e202300412. [PMID: 37818932 DOI: 10.1002/cplu.202300412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Many new developments for different industries have their origin in basic science. In recent years, this trend has gained attention due to the increasing interaction between academic science and industry. This article presents some rational materials for chemical modifications that were developed by the basic science, then transferred to the productive sector. Conducting hydrophobic coatings for aerospace applications, hydrogels for the oil and gas industry, as well as polymers for removal of heavy metal, were some of the topics approached in the lab to solve industrial problems. Many times, nature is a great source of inspiration to produce new materials. In this sense, superhydrophobicity and superhydrophilicity (concepts closely related to our everyday life) were the bioinspiration for the development of membranes. These membranes were able to separate hydrocarbons and water, which found application in the treatment of subterranean water for the oil and gas industry.
Collapse
Affiliation(s)
- Verónica E Manzano
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET- Universidad de Buenos Aires., Buenos Aires, Argentina
| | - Norma B D'Accorso
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Ma J, Guo Z, Han X, Lu H, Guo K, Xin J, Deng C, Wang X. Achieving Solar-Thermal-Electro Integration Evaporator Nine-Grid Array with Asymmetric Strategy for Simultaneous Harvesting Clean Water and Electricity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303815. [PMID: 37740418 PMCID: PMC10625061 DOI: 10.1002/advs.202303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Water evaporation is a ubiquitous and spontaneous phase transition process. The utilization of solar-driven interface water evaporation that simultaneously obtains clean water and power generation can effectively alleviate people's concerns about fresh water and energy shortages. However, it remains a great challenge to efficiently integrate the required functions into the same device to reduce the complexity of the system and alleviate its dependence on solar energy to achieve full-time operation. In this work, a multifunctional device based on reduced graphene oxide (RGO)/Mn3 O4 /Al2 O3 composite nanomaterials is realized by an asymmetric strategy for effective solar-thermal-electro integration that can induce power generation by water evaporation in the presence/absence of light. Under one sun irradiation, the solar-driven evaporation rate and output voltage are 1.74 kg m-2 h-1 and 0.778 V, respectively. More strikingly, the nine-grid evaporation/power generation array integrated with multiple devices in series has the advantages of small volume, large evaporation area, and high power generation, and can light up light-emitting diodes (LEDs), providing the possibility for large-scale production and application. Based on the high photothermal conversion efficiency and power production capacity of the RGO/Mn3 O4 /Al2 O3 composite evaporation/generator, it will be a promising energy conversion device for future sustainable energy development and applications.
Collapse
Affiliation(s)
- Junli Ma
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| | - Zhenzhen Guo
- School of Chemistry and Chemical EngineeringHenan Institute of Science and TechnologyXinxiang473003P. R. China
| | - Xu Han
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| | - Heng Lu
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| | - Kaixin Guo
- School of Electronics & Information EngineeringGuiyang UniversityGuiyang550005P. R. China
| | - Jianguo Xin
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081P. R. China
| | - Chaoyong Deng
- School of Electronics & Information EngineeringGuiyang UniversityGuiyang550005P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| |
Collapse
|