1
|
Pu Y, Wei W, Li S, Long J, Gu Y, Hong G, Guo J. Edible batteries for biomedical innovation: advances, challenges, and future perspectives. Chem Commun (Camb) 2025. [PMID: 40392610 DOI: 10.1039/d5cc01385b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
In biomedical applications, the demand for advanced electronic devices that enable precise monitoring, targeted therapies, and non-invasive diagnostic tools is steadily increasing to enhance patient outcomes. Edible batteries seamlessly combine biocompatibility, energy efficiency, and safe ingestion, offering a reliable power source for in vivo devices and opening up new possibilities for innovative healthcare solutions. Beyond supporting precise monitoring and advanced therapeutic interventions, edible batteries overcome the inherent limitations of traditional batteries, such as rigidity, toxicity, and environmental concerns. Their unique properties make them essential for advancing precision medicine and promoting sustainable biomedical technologies. This transformative approach marks a significant leap in the evolution of battery technology for biomedical engineering applications. This review systematically categorizes edible batteries into various types, including lithium-based, sodium-based, magnesium-based, zinc-based, and other emerging systems. It further highlights key distinctions in material selection, structural design, and fabrication techniques, examining their influence on electrochemical performance and suitability for biomedical applications. Additionally, the review identifies existing challenges and outlines prospective research directions, paving the way for further advancements in this innovative field.
Collapse
Affiliation(s)
- Yiran Pu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Wenqi Wei
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Shuyun Li
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Jiaxin Long
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yutong Gu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Gonghua Hong
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Chuang YJ, Pal A, Chen BH, Jena S, Suresh S, Lin ZH, Huang MH. Synthesis of shape-tunable PbZrTiO 3 nanocrystals with lattice variations for piezoelectric energy harvesting and human motion detection. Chem Sci 2025; 16:3285-3295. [PMID: 39845877 PMCID: PMC11747815 DOI: 10.1039/d4sc06643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
PbZr0.7Ti0.3O3 cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO3 cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples. Fast Fourier Transform (FFT) processing of high-resolution transmission electron microscopy (HR-TEM) images shows discernible lattice spot differences between the inner bulk and surface layer region for a PbZr0.7Ti0.3O3 cube, while a cuboid has distinct lattice spot deviations. The lattice variations yield different dielectric constant numbers for these two samples, despite being bound by the same crystal faces. The PbZrTiO3 crystals give size- and composition-dependent band gaps. Cuboids show notably larger piezoelectric and ferroelectric responses than cubes. Piezoelectric nanogenerators (PENGs) containing 30 wt% cuboids produce the highest open-circuit voltage of 20.36 V and short-circuit current of 2300 nA. The PENGs harvest energy through bending/releasing cycles to power devices and show photothermal pyroelectric activity. Moreover, a single 30 wt% cuboid PENG device integrated into a shoe insole can deliver an impressive 96.8% accuracy for human motion detection using a machine learning approach. This work illustrates that considerable lattice variation through crystal shape control is effective in enhancing material properties.
Collapse
Affiliation(s)
- Ya-Ju Chuang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Arnab Pal
- Department of Biomedical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Bo-Hao Chen
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
| | - Satyaranjan Jena
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Sreerag Suresh
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University Taipei 10617 Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Michael H Huang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| |
Collapse
|
3
|
Pal A, Suresh S, Khan A, Kuo LH, Chi LT, Ganguly A, Kao CY, Sharma MK, Wang TSA, Kang DY, Lin ZH. Metal-organic frameworks as thermocatalysts for hydrogen peroxide generation and environmental antibacterial applications. SCIENCE ADVANCES 2025; 11:eads4711. [PMID: 39772687 PMCID: PMC11708883 DOI: 10.1126/sciadv.ads4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Reactive oxygen species (ROS) are highly reactive, making them useful for environmental and health applications. Traditionally, photocatalysts and piezocatalysts have been used to generate ROS, but their utilization is limited by various environmental and physical constraints. This study introduces metal-organic frameworks (MOFs) as modern thermocatalysts efficiently producing hydrogen peroxide (H2O2) from small temperature differences. Temperature fluctuations, abundant in daily life, offer tremendous potential for practical thermocatalytic applications. As proof of concept, MOF materials coated onto carbon fiber fabric (MOF@CFF) created a thermocatalytic antibacterial filter. The study compared three different MOFs (CuBDC, MOF-303, and ZIF-8) with bismuth telluride (Bi2Te3), a known thermocatalytic material. ZIF-8 demonstrated superior H2O2 generation under low-temperature differences, achieving 96% antibacterial activity through temperature variation cycles. This work advances potential in thermoelectric applications of MOFs, enabling real-time purification and disinfection through H2O2 generation. The findings open interdisciplinary avenues for leveraging thermoelectric effects in catalysis and various technologies.
Collapse
Affiliation(s)
- Arnab Pal
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sreerag Suresh
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Arshad Khan
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li Huai Kuo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Li Tang Chi
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Anindita Ganguly
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yao Kao
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Manish Kumar Sharma
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Shing Andrew Wang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Park J, Akbaba GE, Sharma N, Das R, Vinikoor T, Liu Y, Le DQ, Angadi K, Nguyen TD. Electrically Active Biomaterials for Stimulation and Regeneration in Tissue Engineering. J Biomed Mater Res A 2025; 113:e37871. [PMID: 39806919 PMCID: PMC11773453 DOI: 10.1002/jbm.a.37871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries. Consequently, electrically active materials with excellent biocompatibility have attracted attention for their applications in stimulation and regeneration in tissue engineering. To fully exploit the potential of these materials, biocompatibility, operating mechanisms, electrical properties, and even biodegradability should be carefully considered. In this review, we categorize various electrically active biomaterials based on their mechanisms for generating electrical cues, such as piezoelectric effect, triboelectric effect, and others. We also summarize the key material properties, including electrical characteristics and biodegradability, and describe their applications in tissue stimulation and regeneration for nerves, musculoskeletal tissues, and cardiovascular tissues. The electrically active biomaterials hold great potential for advancing the field of tissue engineering and their demonstrated success underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Gulsah Erel Akbaba
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, Connecticut, USA
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Nidhi Sharma
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, Maryland, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Yang Liu
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Duong Quang Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Research Institute of Stem Cell and Gene Technology, College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Kishan Angadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Thanh Duc Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, Connecticut, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
5
|
Li Y, Luo Y, Deng H, Shi S, Tian S, Wu H, Tang J, Zhang C, Zhang X, Zha JW, Xiao S. Advanced Dielectric Materials for Triboelectric Nanogenerators: Principles, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314380. [PMID: 38517171 DOI: 10.1002/adma.202314380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Triboelectric nanogenerator (TENG) manifests distinct advantages such as multiple structural selectivity, diverse selection of materials, environmental adaptability, low cost, and remarkable conversion efficiency, which becomes a promising technology for micro-nano energy harvesting and self-powered sensing. Tribo-dielectric materials are the fundamental and core components for high-performance TENGs. In particular, the charge generation, dissipation, storage, migration of the dielectrics, and dynamic equilibrium behaviors determine the overall performance. Herein, a comprehensive summary is presented to elucidate the dielectric charge transport mechanism and tribo-dielectric material modification principle toward high-performance TENGs. The contact electrification and charge transport mechanism of dielectric materials is started first, followed by introducing the basic principle and dielectric materials of TENGs. Subsequently, modification mechanisms and strategies for high-performance tribo-dielectric materials are highlighted regarding physical/chemical, surface/bulk, dielectric coupling, and structure optimization. Furthermore, representative applications of dielectric materials based TENGs as power sources, self-powered sensors are demonstrated. The existing challenges and promising potential opportunities for advanced tribo-dielectric materials are outlined, guiding the design, fabrication, and applications of tribo-dielectric materials.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yi Luo
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haocheng Deng
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shengyao Shi
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shuangshuang Tian
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Haoying Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jun-Wei Zha
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
6
|
Zhang D, Zhou L, Wu Y, Yang C, Zhang H. Triboelectric Nanogenerator for Self-Powered Gas Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406964. [PMID: 39377767 DOI: 10.1002/smll.202406964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Indexed: 10/09/2024]
Abstract
With the continuous acceleration of industrialization, gas sensors are evolving to become portable, wearable and environmentally friendly. However, traditional gas sensors rely on external power supply, which severely limits their applications in various industries. As an innovative and environmentally adaptable power generation technology, triboelectric nanogenerators (TENGs) can be integrated with gas sensors to leverage the benefits of both technologies for efficient and environmentally friendly self-powered gas sensing. This paper delves into the basic principles and current research frontiers of the TENG-based self-powered gas sensor, focusing particularly on innovative applications in environmental safety monitoring, healthcare, as well as emerging fields such as food safety assurance and smart agriculture. It emphasizes the significant advantages of TENG-based self-powered gas sensor systems in promoting environmental sustainability, achieving efficient sensing at room temperature, and driving technological innovations in wearable devices. It also objectively analyzes the technical challenges, including issues related to performance enhancement, theoretical refinement, and application expansion, and provides targeted strategies and future research directions aimed at paving the way for continuous progress and widespread applications in the field of self-powered gas sensors.
Collapse
Affiliation(s)
- Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lina Zhou
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Wu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hao Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
7
|
Xiang H, Peng L, Yang Q, Wang ZL, Cao X. Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education. SCIENCE ADVANCES 2024; 10:eads2291. [PMID: 39612344 PMCID: PMC11606449 DOI: 10.1126/sciadv.ads2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Triboelectric nanogenerator (TENG) has become a promising option for high-entropy energy harvesting and self-powered sensors because of their ability to combine the effects of contact electrification and electrostatic induction to effectively convert mechanical energy into electric power or signals. Here, the theoretical origin of TENG, strategies for high-performance TENG, and its applications in high-entropy energy, self-powered sensors, and blue energy are comprehensively introduced on the basis of the fundamental science and principle of TENG. Besides, a series of work in popular science education for TENG that includes numerous scientific and technological products from our science education base, Maxwell Science+, is emphatically introduced. This topic provides an angle and notable insights into the development of TENG.
Collapse
Affiliation(s)
- Huijing Xiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Lin Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiuxiang Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Guangzhou Institute of Blue Energy, Guangzhou 510555, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Huang YT, Khan A, Ganguly A, Kaswan K, Suresh S, Cheng YY, Lee KM, Yu JH, Lin ZH. Real-Time Wireless Detection of Heavy Metal Ions Using a Self-Powered Triboelectric Nanosensor Integrated with an Autonomous Thermoelectric Generator-Powered Robotic System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410424. [PMID: 39520087 DOI: 10.1002/advs.202410424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The integration of the Internet of Things (IoT) with advanced sensing technologies is transforming environmental monitoring and public health protection. In this study, a fully self-powered and automated chemical sensing system is developed and integrated with a robotic hand for "touch and sense" detection of toxic heavy metal ions (Pb2⁺, Cr⁶⁺, As3⁺) in aquatic environments. The system combines a self-powered solid-liquid triboelectric nanosensor (SL-TENS) with a thermoelectric generator (TEG), which harnesses ambient heat to power the robotic hand, eliminating the need for external power sources. The robotic hand is controlled wirelessly via an exo-hand, minimizing the risk of exposure during remote monitoring. The sensing component uses copper oxide nanowires (CuO NWs) coated with ion-selective membranes (ISMs) to enhance triboelectric output and enable highly selective ion detection. The system demonstrates effective real-time, on-site detection in lake water and data transmitted wirelessly to the user. This innovative approach provides a highly safe and efficient method for detecting hazardous pollutants in difficult-to-access areas, offering significant potential for wireless and real-time environmental monitoring and hazard prevention, thus contributing to the safeguarding of human health. This study presents a novel advancement in the field of IoT-enabled environmental monitoring systems.
Collapse
Affiliation(s)
- Yan-Tsz Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arshad Khan
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Anindita Ganguly
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
| | - Kuldeep Kaswan
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sreerag Suresh
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ying Cheng
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuan-Ming Lee
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-Han Yu
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, 10167, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|