1
|
Chen X, Dong F, Wang S, Liu H, Xu X. High-Durability Cellulose-Based Composite Paper with Superior Electromagnetic Interference Shielding. Biomacromolecules 2025; 26:1968-1977. [PMID: 39895031 DOI: 10.1021/acs.biomac.4c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Highly efficient electromagnetic interference (EMI) shielding materials are critical for portable hardware and flexible electronics, where mechanical durability often poses challenges. Here, the excellent wear resistance and flexibility of thermoplastic polyurethane are utilized to provide a "protective layer" for EMI equipment. A carbon nanotube/cellulose/thermoplastic polyurethane (CNT/paper/TPU) composite paper with a three-layer structure was prepared using a coating method. Strong hydrogen bonds between CNTs, cellulose, and TPU ensured robust integration. The composite, with a thickness of 0.54 mm and conductivity of 1040 S/m, achieved exceptional EMI shielding effectiveness of 69.0 dB. It demonstrated durability against water, solvents, bending, and friction while maintaining shielding performance. Furthermore, its excellent mechanical properties and fatigue resistance significantly enhance equipment lifespan. Therefore, it is expected that this work will open a simple strategy for developing materials with excellent durable EMI shielding properties.
Collapse
Affiliation(s)
- Xingyu Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing, Jiangsu 210042, China
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing, Jiangsu 210042, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing, Jiangsu 210042, China
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
2
|
Dou H, Xu M, Zhang Z, Luo D, Yu A, Chen Z. Biomass Solid-State Electrolyte with Abundant Ion and Water Channels for Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401858. [PMID: 38569594 DOI: 10.1002/adma.202401858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Flexible zinc-air batteries are the leading candidates as the next-generation power source for flexible/wearable electronics. However, constructing safe and high-performance solid-state electrolytes (SSEs) with intrinsic hydroxide ion (OH-) conduction remains a fundamental challenge. Herein, by adopting the natural and robust cellulose nanofibers (CNFs) as building blocks, the biomass SSEs with penetrating ion and water channels are constructed by knitting the OH--conductive CNFs and water-retentive CNFs together via an energy-efficient tape casting. Benefiting from the abundant ion and water channels with interconnected hydrated OH- wires for fast OH- conduction under a nanoconfined environment, the biomass SSEs reveal the high water-uptake, impressive OH- conductivity of 175 mS cm-1 and mechanical robustness simultaneously, which overcomes the commonly existed dilemma between ion conductivity and mechanical property. Remarkably, the flexible zinc-air batteries assemble with biomass SSEs deliver an exceptional cycle lifespan of 310 h and power density of 126 mW cm-2. The design methodology for water and ion channels opens a new avenue to design high-performance SSEs for batteries.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mi Xu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Jin X, Li X, Liu Y, Cui Y, Liang Y, Wang Q, Wang J, Yang R, Zhao J, Xia C. Self-assembly of metal-polyphenolic network on biomass for enhanced organic contaminant capturing from water with a high cost-to-benefit ratio. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134183. [PMID: 38574663 DOI: 10.1016/j.jhazmat.2024.134183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xueyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yilong Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qin Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jin Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|