1
|
Zhang Z, Zhao Q, Xu Q, Deng Q, Hua A, Wang X, Yang X, Li Z. A mitochondria-interfering nanocomplex cooperates with photodynamic therapy to boost antitumor immunity. Biomaterials 2025; 317:123094. [PMID: 39799701 DOI: 10.1016/j.biomaterials.2025.123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Immunotherapeutics against triple-negative breast cancer (TNBC) hold great promise. In this work, we provide a combination therapy for simultaneous increasing tumor immunogenicity and down-regulating programmed cell death ligand 1 (PD-L1) to boost antitumor immunity in TNBC. We prepare bis (diethyldithiocarbamate)-copper/indocyanine green nanoparticles (CuET/ICG NPs) simply in aqueous with one-pot method. CuET/ICG NPs interfere mitochondria, reduce oxygen consumption, and alleviate tumor hypoxia to potentiate photodynamic therapy (PDT) for amplifying immunogenic cell death (ICD). Meanwhile, mitochondria dysfunction leads to energy stress and activates AMPK pathway. As a result, CuET/ICG NPs downregulates membrane PD-L1 (mPD-L1) on both 4T1 cancer cells and cancer stem cells (CSCs) through AMP-activated protein kinase (AMPK)-mediated pathway in hypoxia. Cooperatively, the combinational therapy activates antitumor immunity and triggers long lasting immune memory response to resist tumor re-challenge. Our study represents an attempt that conquers tumor immunosuppressive microenvironment with simple biomedical materials and multimodality treatments.
Collapse
Affiliation(s)
- Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingfu Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingqing Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
2
|
Susilo RJK, Pramudya M, Dewi FRP, Seftiarini W, Hidayati D, Aunurohim A, Lim V, Herdiansyah MA, Hayati A. Adverse Effect of Polystyrene Nanoplastics in Impairing Glucose Metabolism in Liver Injury. Int J Mol Sci 2025; 26:4870. [PMID: 40430012 PMCID: PMC12112329 DOI: 10.3390/ijms26104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Polystyrene nanoplastics (PS-NPs) are result from the degradation of plastic and have diameters ranging from 1 nm to 100 nm. The objective of this study is to provide information on the adverse effects of PS-NPs with in vitro and in vivo analyses of liver injury. An in vitro study was conducted using confocal microscopy, flow cytometry, and MTT test analysis. An in vivo study was conducted to determine apoptosis levels, glucose metabolism gene expressions, liver enzymes, and liver histology. Data were analyzed using GraphPad Prism software 10.2.1. The in vitro study showed the absorption of PS-NPs in the cell cytoplasm, the percentage of apoptosis, 3t3, and the WiDr cell lines' viability. The in vivo analysis showed that PS-NPs can stimulate liver injuries, such as inducing the elevation of liver enzymes, necrosis, edema, inflammation, and the dilatation of the portal vein diameter. High levels of caspase-3, caspase-9, and Bax were detected, as well as the expression of several genes including PI3K, AKT, PEPCK, GLUT2, and PK. In conclusion, the in vitro analysis showed the detrimental effects of PS-NPs on cells, such as high levels of apoptosis and low cell viability, while the in vivo studies displayed the impairment of liver tissue and disturbances in glucose metabolism regulation.
Collapse
Affiliation(s)
- Raden Joko Kuncoroningrat Susilo
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Manikya Pramudya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| | - Windy Seftiarini
- Graduate School of Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Dewi Hidayati
- Department of Biology, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (D.H.); (A.A.)
| | - Aunurohim Aunurohim
- Department of Biology, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (D.H.); (A.A.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia;
| | - Mochammad Aqilah Herdiansyah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| | - Alfiah Hayati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| |
Collapse
|
3
|
Zou J, Xiao XJ, Zhang P, Huang XZ, Wang J, Tao CQ, Ou XL, Chen G, He TH, Yang L, Huang B, Yu DJ, Zhao Y. Berberine in the treatment of radiation-induced skin injury: insights from proteomics and network pharmacology. Front Pharmacol 2025; 16:1542851. [PMID: 40421220 PMCID: PMC12104247 DOI: 10.3389/fphar.2025.1542851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Background Radiation-induced skin injury (RISI) is a notable complication of cancer radiotherapy, impacting patients' quality of life. Existing interventions mainly address symptoms, with limited success in targeting the fundamental mechanisms. Berberine (BBR), a bioactive compound recognized for its anti-inflammatory, antioxidant, and anti-fibrotic characteristics, presents a compelling option for treating RISI. Methods The molecular targets of BBR and RISI were identified using Swiss Target Prediction and GeneCards databases. A protein-protein interaction (PPI) network was then constructed, and core targets were screened with the Cytoscape plug-in. Molecular functions and pathways were analyzed through GO and KEGG pathway enrichment analyses. Proteomic analysis identified differential protein expression following BBR treatment. Molecular docking validated BBR's binding to core targets PRKACA and PIK3CB. Finally, the therapeutic efficacy of BBR was confirmed in irradiated cell and animal models. Results BBR is pivotal in modulating molecular pathways linked to inflammation, oxidative stress, and tissue repair. Protein histology indicates a marked increase in epithelial migration and proliferation markers (KRT14, KRT16) and a decrease in inflammatory markers (IL6ST, TNFRSF10B). Enrichment of pathways like the MAPK cascade and epithelial development highlights BBR's role in skin regeneration. Molecular docking confirms BBR's stable binding to key targets PRKACA and PIK3CB, essential for cell proliferation and inflammation control. Moreover, BBR treatment promoted the proliferation of irradiated cells and accelerated wound healing in irradiated animal models. Conclusion Berberine demonstrates multi-target therapeutic potential in managing RISI by modulating inflammation, oxidative stress, and cellular repair processes. These findings provide a foundation for future clinical studies to optimize its dosage and delivery, aiming to improve treatment outcomes for RISI.
Collapse
Affiliation(s)
- Jie Zou
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xia-Juan Xiao
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ping Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xing-Zi Huang
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Jing Wang
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Chun-Qin Tao
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Xiao-Lan Ou
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Gong Chen
- Chengdu Medical College, Chengdu, China
| | | | - Long Yang
- Chengdu Medical College, Chengdu, China
| | - Biao Huang
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Dao-Jiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Ban J, Qian J, Zhang C, Li J. Recent advances in TAM mechanisms in lung diseases. J Transl Med 2025; 23:479. [PMID: 40287707 PMCID: PMC12032715 DOI: 10.1186/s12967-025-06398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
TYRO3, MERTK, and AXL receptor tyrosine kinases, collectively known as TAM receptors, play a vital role in maintaining lung tissue homeostasis by regulating integrity and self-renewal. These receptors activate signalling pathways that inhibit apoptosis, promote cell proliferation and differentiation, mediate cell adhesion and migration, and perform other essential biological functions. Additionally, TAM receptors are implicated in mechanisms that suppress anti-tumor immunity and confer resistance to immune checkpoint inhibitors. Disruption of the homeostatic balances can lead to pathological conditions such as lung inflammation, fibrosis, or tumors. Recent studies highlight their significant role in COVID-19-induced lung injury. However, the exact mechanisms by which TAM receptors contribute to lung diseases remain unclear. This article reviews the potential mechanisms of TAM receptor involvement in disease progression, focusing on lung inflammation, fibrosis, cancer, and COVID-19-induced lung injury. It also explores future research aspects and the therapeutic potentials of targeting TAM receptors, providing a theoretical foundation for understanding lung disease mechanisms and identifying treatment targets.
Collapse
Affiliation(s)
- Jiaqi Ban
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Jiayi Qian
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Chi Zhang
- School of Clinical Medicine, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, People's Republic of China
| | - Jun Li
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
5
|
Zeng S, Liu L, Cheng Q, Chen W, Wang M, Wu M, Wang Z, Du J, Xiang R, Qi Q, Jia T. Novel Mitochondria-Targeted Asymmetric Heptamethine Cyanine Dye for Cancer Targeted NIR Imaging and Potent Necrosis and Senescence Induction with Prolonged Retention. J Med Chem 2025; 68:8174-8189. [PMID: 40211757 DOI: 10.1021/acs.jmedchem.4c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Developing small molecules that inherently integrate highly tumor-targeted near-infrared fluorescence (NIRF) imaging with potent therapeutic effects remains challenging in anticancer theranostics. Here, we synthesized and characterized a series of heptamethine cyanine PSs with symmetric and asymmetric structures. Among them, we first discovered that asymmetric structures significantly enhanced tumor targeting. Also, a novel mitochondria-targeted asymmetric compound 17 exhibited superior NIRF imaging capability, exceptional tumor selectivity (TNR = 8.54), and strong antitumor activity. Compound 17 selectively accumulates in mitochondria, driven by MMP, where it generates ROS, induces DNA damage, and triggers senescence, apoptosis, and necrosis. Its strong therapeutic efficacy was demonstrated across multiple models, including patient-derived xenograft (PDX), where it allowed precise tumor visualization, significantly suppressed tumor growth with a single administration, and showed no detectable toxicity. Notably, the single-dye small molecule 17 was retained in tumors for over 120 h, enabling prolonged imaging, targeted therapy, and drug delivery for integrated antitumor treatment.
Collapse
Affiliation(s)
- Siyi Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Linxia Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qi Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanlei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingxia Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Qingrong Qi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621000, China
- Sichuan Provincial Engineering Research Center of Nuclear Medical Equipment Translation and Application (Mianyang Central Hospital), Mianyang 621000, China
| |
Collapse
|
6
|
Guo C, Lin L, Wang Y, Jing J, Gong Q, Luo K. Nano drug delivery systems for advanced immune checkpoint blockade therapy. Theranostics 2025; 15:5440-5480. [PMID: 40303342 PMCID: PMC12036873 DOI: 10.7150/thno.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been widely utilized in the first-line therapy of various types of cancer. However, immune-related adverse events (irAEs) and resistance to ICIs remain intractable challenges for immune checkpoint blockade (ICB) therapy during clinic treatment. Nano drug delivery systems (NDDSs) have shown promising potential to improve anticancer efficacy and reduce side effects of small molecular drugs. The combination of nanotechnology and ICB provides new opportunities to overcome the challenges of immunotherapy. Nanoplatforms have been employed for direct delivery of ICIs, and they are preferred vehicles for combination therapy of ICIs and other therapeutic agents. In this review, the strategies of using NDDSs for advancing ICB therapy in recent years are surveyed, emphasizing the employment of NDDSs for combination treatment by ICIs and other agents to manipulate antitumor immunity. Analysis of current strategies for applying NDDSs for ICB leads to future research directions and development trends.
Collapse
Affiliation(s)
- Chenqi Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Lin
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yihan Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Chengdu 610041, China
| | - Jing Jing
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
7
|
Zheng A, Wang X, Wu Y, Lan J, Wu M, Zhang D, Zhang F, Liu X, Zeng Y. Highly Efficient Bifunctional Peptides for Tumor Immunotherapy by Simultaneously Activating T Cells and Blocking PD-L1 Immune Checkpoint. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18194-18205. [PMID: 40088153 DOI: 10.1021/acsami.5c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Immune checkpoint inhibitors represented by PD-1/PD-L1 monoclonal antibodies have shown great success in tumor immunotherapy. However, the response rate of immune checkpoint blockade (ICB) therapy alone is far from satisfactory due to insufficient and exhausted tumor-infiltrating T cells. Meanwhile, antibody-based drugs have some drawbacks such as high cost and complicated preparation, which require further development of nonantibody immune checkpoint inhibitors and more rational strategies for improving the effectiveness of tumor treatment. Here, a highly efficient bifunctional peptide (Bi-pep) was constructed for tumor treatment by simultaneously activating T cells and blocking the PD-L1 immune checkpoint. This peptide not only can block the PD-1/PD-L1 immunosuppressive pathway but also directly and efficiently promote the activation and proliferation of T cells, thereby showing a significant effect on promoting T cell killing of tumor cells. The Bi-pep-induced antitumor effect was verified on both subcutaneous and orthotopic tumor models, which can significantly inhibit tumor growth and thus prolong the survival of tumor-bearing mice, holding great potential for biomedical applications.
Collapse
Affiliation(s)
- Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Xiaorong Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yaning Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jing Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| |
Collapse
|
8
|
Shan X, Cai Y, Zhu B, Sun X, Zhou L, Zhao Z, Li Y, Wang D. Computer-Aided Design of Self-Assembled Nanoparticles to Enhance Cancer Chemoimmunotherapy via Dual-Modulation Strategy. Adv Healthc Mater 2025; 14:e2404261. [PMID: 39828527 DOI: 10.1002/adhm.202404261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Indexed: 01/22/2025]
Abstract
The rational design of self-assembled compounds is crucial for the highly efficient development of carrier-free nanomedicines. Herein, based on computer-aided strategies, important physicochemical properties are identified to guide the rational design of self-assembled compounds. Then, the pharmacophore hybridization strategy is used to design self-assemble nanoparticles by preparing new chemical structures by combining pharmacophore groups of different bioactive compounds. Hydroxychloroquine is grafted with the lipophilic vitamin E succinate and then co-assembled with bortezomib to fabricate the nanoparticle. The nanoparticle can reduce M2-type tumor-associated macrophages (TAMs) through lysosomal alkalization and induce immunogenic cell death (ICD) and nuclear factor-κB (NF-κB) inhibition in tumor cells. In mouse models, the nanoparticles induce decreased levels of M2-type TAMs, regulatory T cells, and transforming growth factor-β (TGF-β), and increase the proportion of cytotoxicity T lymphocytes. Additionally, the nanoparticles reduce the secretion of Interleukin-6 (IL-6) by inhibiting NF-κB and enhance the programmed death ligand-1 (PD-L1) checkpoint blockade therapy. The pharmacophore hybridization-derived nanoparticle provides a dual-modulation strategy to reprogram the tumor microenvironment, which will efficiently enhance the chemoimmunotherapy against triple-negative breast cancer.
Collapse
Affiliation(s)
- Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China
| | - Dangge Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| |
Collapse
|
9
|
Yen YT, Zhang Z, Chen A, Qiu Y, Liu Q, Wang Q, Li C, Wang C, Qian X, Shao J, Meng F, Yu L, Liu B, Li R. Enzymatically responsive nanocarriers targeting PD-1 and TGF-β pathways reverse immunotherapeutic resistance and elicit robust therapeutic efficacy. J Nanobiotechnology 2025; 23:124. [PMID: 39972327 PMCID: PMC11841268 DOI: 10.1186/s12951-025-03129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized lung cancer treatment, yet resistance remains a challenge. Co-inhibition of PD-1/PD-L1 and TGF-β shows promise but faces limited efficacy and systemic toxicity. We developed gelatinase-responsive nanoparticles (GPNPs) delivering anti-PD-1 antibody (αPD-1) and TGF-β receptor I inhibitor galunisertib (Gal). GPNPs effectively inhibit tumor progression without observed side effects. Immune profiling by cytometry assay reveals robust recruitment of both activated and exhausted tumor-infiltrating lymphocytes (TILs) and macrophages. Transcriptomic analysis indicates extracellular matrix modulation, supported by reduced collagen deposition and αSMA expression. Fate mapping demonstrates attenuation of Pdgfrα+ fibroblast transition to αSMA myofibroblasts, potentially reversing "immune-exclusive" status. This study validates GPNPs as a promising lung cancer immunotherapy platform, offering mechanistic insights for clinical translation and therapeutic enhancement.
Collapse
Affiliation(s)
- Ying-Tzu Yen
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhifan Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Anni Chen
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuling Qiu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qin Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qin Wang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chunhua Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Chun Wang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jie Shao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Rutian Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Clinical Cancer Institute of Nanjing University, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
10
|
Cheng Q, Chen Y, Zou D, Li Q, Shi X, Qin Q, Liu M, Wang L, Wang Z. Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409329. [PMID: 39739629 PMCID: PMC11831457 DOI: 10.1002/advs.202409329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments. We discover that transition metal vanadium (V) effectively inhibits glucose metabolism in CRC and synergizes with glutaminase inhibitors (BPTES) to disrupt CRC's energy dependency. Thus, a dual energy metabolism suppression nanosystem (VSi-BP@HA) is engineered by loading BPTES into V-doped hollow mesoporous silica nanoparticles. This nanosystem effectively dampens CRC energy metabolism, eradicating 33% of tumors in mice. Strikingly, the cell biological and preclinical model datasets provide compelling evidence showing that VSi-BP@HA not only reverses CRC cells chemo-resistance but also drastically potentiates anti-PD1 immunotherapy. Therefore, this nanosystem provides not only a promising approach to suppress CRC, but also a potential adjunct tool for enhancing chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Qian Cheng
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Yuzhe Chen
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Danyi Zou
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Qushuhua Qin
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
11
|
Rataan AO, Xu Y, Geary SM, Zakharia Y, Kamel ES, Rustum YM, Salem AK. Targeting transforming growth factor-β1 by methylseleninic acid/seleno-L-methionine in clear cell renal cell carcinoma: Mechanisms and therapeutic potential. Cancer Treat Res Commun 2025; 42:100864. [PMID: 39813754 PMCID: PMC11846624 DOI: 10.1016/j.ctarc.2025.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) poses a significant global health challenge as its incidence continues to rise, resulting in a substantial annual mortality rate. Major clinical challenges to current ccRCC treatments include high drug-resistance rates as well as dose-limiting adverse events; underlining the need to identify additional 'druggable' targets. TGF-β1, VEGF, and PD-L1 are potential therapeutic targets in ccRCC. This study analyzed their expression in human ccRCC cell lines and patient tumor biopsies. Data obtained from western blotting demonstrated higher levels of TGF-β1 and PD-L1 and lower levels of VEGF in sarcomatoid ccRCC cell lines compared to non-sarcomatoid ccRCC cell lines. In patient samples, TGF-β1 was significantly upregulated in both non-sarcomatoid and sarcomatoid ccRCC tumors. It was demonstrated through two assays (cellular thermal shift assay and a size exclusion assay) that methylseleninic acid (MSA) binds specifically and directly to TGF-β1. MSA treatment significantly downregulated TGF-β1, PD-L1, and VEGF in a dose- and time-dependent manner in both non-sarcomatoid and sarcomatoid ccRCC cell lines. Seleno-L-methionine (SLM) treatment in a nude mouse xenograft model showed a significant tumor growth inhibition and TGF-β1 downregulation at non-toxic doses. These findings suggest that selenium-mediated downregulation of TGF-β1, PD-L1, and VEGF could be a viable therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Aseel O Rataan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Youcef M Rustum
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Roswell Park Comprehensive Cancer Center, Department of Pharmacology & Therapeutics, Buffalo, NY 14203, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
12
|
Zhou Z, Luo W, Zheng C, Wang H, Hu R, Deng H, Shen J. Mitochondrial metabolism blockade nanoadjuvant reversed immune-resistance microenvironment to sensitize albumin-bound paclitaxel-based chemo-immunotherapy. Acta Pharm Sin B 2024; 14:4087-4101. [PMID: 39309498 PMCID: PMC11413680 DOI: 10.1016/j.apsb.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 09/25/2024] Open
Abstract
Currently, the efficacy of albumin-bound paclitaxel (PTX@Alb) is still limited due to the impaired PTX@Alb accumulation in tumors partly mediated by the dense collagen distribution. Meanwhile, acquired immune resistance always occurs due to the enhanced programmed cell death-ligand 1 (PD-L1) expression after PTX@Alb treatment, which then leads to immune tolerance. To fill these gaps, we newly revealed that tamoxifen (TAM), a clinically widely used adjuvant therapy for breast cancer with mitochondrial metabolism blockade capacity, could also be used as a novel effective PD-L1 and TGF-β dual-inhibitor via inducing the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) protein. Following this, to obtain a more significant effect, TPP-TAM was prepared by conjugating mitochondria-targeted triphenylphosphine (TPP) with TAM, which then further self-assembled with albumin (Alb) to form TPP-TAM@Alb nanoparticles. By doing this, TPP-TAM@Alb nanoparticles effectively decreased the expression of collagen in vitro, which then led to the enhanced accumulation of PTX@Alb in 4T1 tumors. Besides, TPP-TAM@Alb also effectively decreased the expression of PD-L1 and TGF-β in tumors to better sensitize PTX@Alb-mediated chemo-immunotherapy by enhancing T cell infiltration. All in all, we newly put forward a novel mitochondrial metabolism blockade strategy to inhibit PTX@Alb-resistant tumors, further supporting its better clinical application.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenjuan Luo
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunjuan Zheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Hu
- Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|