1
|
Yi H, Wang C, Ge B, Xu F, Jiang P, Zhou M, Xing F, Huang C. Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500253. [PMID: 40116587 DOI: 10.1002/smll.202500253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (Hads) migrate from adjacent Cu sites to active S atoms, promoting H2 production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H2 production rate of 7400 µmol g-1 h-1. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.
Collapse
Affiliation(s)
- Huimin Yi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chenyi Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Baoxin Ge
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Fangjie Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Pengyang Jiang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Fangshu Xing
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Caijin Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
2
|
Ran L, Lu Y, Chen L, He M, Deng Z. Design, Synthesis, and Application of Immobilized Enzymes on Artificial Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500345. [PMID: 40305741 PMCID: PMC12120765 DOI: 10.1002/advs.202500345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Enzymes have been recognized as highly efficient biocatalysts, whereas characteristics such as poor stability and single reaction type greatly significantly limit their wide application. Hence, the exploitation of suitable carriers for immobilized enzymes enables the provision of a protective layer for the enzyme, with the capability of chemical and biological cascade catalysis. Among the various immobilization carriers, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs) have been emerging as a promising strategy to surpass the inherent instability and other limitations of free enzymes. Specifically, the integration of such artificial porous materials as carriers improves the stability and reusability of enzymes, while simultaneously affording a platform for multifunctional applications. Herein, this review systematically discusses the various preparation strategies and advantages of artificial porous materials, while elucidating the effects of different immobilization methods on enzyme activity. Furthermore, the innovative applications of artificial porous materials as multifunctional carriers in the field of enzyme immobilization fields such as enzyme carriers, photocatalysts, chemical catalysts and sensing are also comprehensively summarized here, thus demonstrating their multifunctional characteristics and promising applications in addressing complex biotransformation challenges.
Collapse
Affiliation(s)
- Lu Ran
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Yuan Lu
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Li Chen
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Mengru He
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichang443002China
| |
Collapse
|