• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4595849)   Today's Articles (2455)   Subscriber (49334)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Yang P, Liu H, Jin Q, Lai Y, Zeng Y, Zhang C, Dong J, Sun W, Guo Q, Cao D, Guo J. Visualizing the Promoting Role of Interfacial Water in the Deprotonation of Formic Acid on Cu(111). J Am Chem Soc 2024;146:210-217. [PMID: 38037330 DOI: 10.1021/jacs.3c07726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
2
Bhandari S, Rangarajan S, Li S, Scaranto J, Singh S, Maravelias CT, Dumesic JA, Mavrikakis M. A Coverage Self-Consistent Microkinetic Model for Vapor-Phase Formic Acid Decomposition over Pd/C Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
3
A review of formic acid decomposition routes on transition metals for its potential use as a liquid H2 carrier. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
4
Choudhary N, Abdelgaid M, Mpourmpakis G, Mobin SM. CuNi bimetallic nanocatalyst enables sustainable direct carboxylation reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
5
Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide. Catal Today 2022;384-386:197-208. [PMID: 35992247 PMCID: PMC9380418 DOI: 10.1016/j.cattod.2021.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022]
6
Pablo-García S, Sabadell-Rendón A, Saadun AJ, Morandi S, Pérez-Ramírez J, López N. Generalizing Performance Equations in Heterogeneous Catalysis from Hybrid Data and Statistical Learning. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
7
Xue Q, Ng BKY, Man HW, Wu TS, Soo YL, Li MM, Kawaguchi S, Wong KY, Tsang SCE, Huang B, Lo TWB. Controlled synthesis of Bi- and tri-nuclear Cu-oxo nanoclusters on metal-organic frameworks and the structure-reactivity correlations. Chem Sci 2021;13:50-58. [PMID: 35059150 PMCID: PMC8694280 DOI: 10.1039/d1sc05495c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]  Open
8
Li R, Liu Z, Trinh QT, Miao Z, Chen S, Qian K, Wong RJ, Xi S, Yan Y, Borgna A, Liang S, Wei T, Dai Y, Wang P, Tang Y, Yan X, Choksi TS, Liu W. Strong Metal-Support Interaction for 2D Materials: Application in Noble Metal/TiB2 Heterointerfaces and their Enhanced Catalytic Performance for Formic Acid Dehydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021;33:e2101536. [PMID: 34216405 DOI: 10.1002/adma.202101536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/24/2021] [Indexed: 06/13/2023]
9
Xu L, Stangland EE, Dumesic JA, Mavrikakis M. Hydrodechlorination of 1,2-Dichloroethane on Platinum Catalysts: Insights from Reaction Kinetics Experiments, Density Functional Theory, and Microkinetic Modeling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
10
Elnabawy AO, Herron JA, Liang Z, Adzic RR, Mavrikakis M. Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Morales‐García Á, Viñes F, Gomes JRB, Illas F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO 2 conversion. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
12
Motagamwala AH, Dumesic JA. Microkinetic Modeling: A Tool for Rational Catalyst Design. Chem Rev 2021;121:1049-1076. [PMID: 33205961 DOI: 10.1021/acs.chemrev.0c00394] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
13
Yang M, Wang B, Fan M, Zhang R. HCOOH decomposition over the pure and Ag-modified Pd nanoclusters: Insight into the effects of cluster size and composition on the activity and selectivity. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
14
Chen BWJ, Xu L, Mavrikakis M. Computational Methods in Heterogeneous Catalysis. Chem Rev 2020;121:1007-1048. [PMID: 33350813 DOI: 10.1021/acs.chemrev.0c01060] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
15
Bhandari S, Rangarajan S, Mavrikakis M. Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the In Situ Nature of the Active Site in Catalysis. Acc Chem Res 2020;53:1893-1904. [PMID: 32869965 DOI: 10.1021/acs.accounts.0c00340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
16
Ding C, Shen T, Yang Y, Xu X. Involvement of the Unoccupied Site Changes the Kinetic Trend Significantly: A Case Study on Formic Acid Decomposition. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Lucas RC, Morgan D, Kuech TF. Density Functional Theory Study of the Gas Phase and Surface Reaction Kinetics for the MOVPE Growth of GaAs1–yBiy. J Phys Chem A 2020;124:1682-1697. [DOI: 10.1021/acs.jpca.9b10399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Bhandari S, Rangarajan S, Maravelias CT, Dumesic JA, Mavrikakis M. Reaction Mechanism of Vapor-Phase Formic Acid Decomposition over Platinum Catalysts: DFT, Reaction Kinetics Experiments, and Microkinetic Modeling. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05424] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
19
The Role of Support in Formic Acid Decomposition on Gold Catalysts. ENERGIES 2019. [DOI: 10.3390/en12214198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
20
Hydrogen Production from Formic Acid Attained by Bimetallic Heterogeneous PdAg Catalytic Systems. ENERGIES 2019. [DOI: 10.3390/en12214027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
21
Zhang N, Chen F, Guo L. Catalytic activity of palladium-doped silver dilute nanoalloys for formate oxidation from a theoretical perspective. Phys Chem Chem Phys 2019;21:22598-22610. [PMID: 31589222 DOI: 10.1039/c9cp04530a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Yu H, Szilvási T, Wang K, Gold JI, Bao N, Twieg RJ, Mavrikakis M, Abbott NL. Amplification of Elementary Surface Reaction Steps on Transition Metal Surfaces Using Liquid Crystals: Dissociative Adsorption and Dehydrogenation. J Am Chem Soc 2019;141:16003-16013. [DOI: 10.1021/jacs.9b08057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
23
Chen BWJ, Stamatakis M, Mavrikakis M. Kinetic Isolation between Turnovers on Au18 Nanoclusters: Formic Acid Decomposition One Molecule at a Time. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
24
Tian H, Rangarajan S. Predicting Adsorption Energies Using Multifidelity Data. J Chem Theory Comput 2019;15:5588-5600. [DOI: 10.1021/acs.jctc.9b00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
25
Back S, Yoon J, Tian N, Zhong W, Tran K, Ulissi ZW. Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts. J Phys Chem Lett 2019;10:4401-4408. [PMID: 31310543 DOI: 10.1021/acs.jpclett.9b01428] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
26
Insight into the effect of surface structure for Pd catalyst on CO oxidative coupling to dimethyl oxalate. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
27
Bienen F, Kopljar D, Löwe A, Aßmann P, Stoll M, Rößner P, Wagner N, Friedrich A, Klemm E. Utilizing Formate as an Energy Carrier by Coupling CO 2 Electrolysis with Fuel Cell Devices. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
28
Zhang R, Peng M, Ling L, Wang B. PdIn intermetallic material with isolated single-atom Pd sites – A promising catalyst for direct formic acid fuel cell. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
29
Hydrogen Production from Formic Acid over Au Catalysts Supported on Carbon: Comparison with Au Catalysts Supported on SiO2 and Al2O3. Catalysts 2019. [DOI: 10.3390/catal9040376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
30
Putra SEM, Muttaqien F, Hamamoto Y, Inagaki K, Hamada I, Morikawa Y. Van der Waals density functional study of formic acid adsorption and decomposition on Cu(111). J Chem Phys 2019;150:154707. [DOI: 10.1063/1.5087420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]  Open
31
Single Au Atoms on the Surface of N-Free and N-Doped Carbon: Interaction with Formic Acid and Methanol Molecules. Top Catal 2019. [DOI: 10.1007/s11244-019-01166-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
32
Guo XT, Zhang J, Chi JC, Li ZH, Liu YC, Liu XR, Zhang SY. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au3Pd1 catalyst. RSC Adv 2019;9:5995-6002. [PMID: 35517262 PMCID: PMC9060862 DOI: 10.1039/c8ra09534e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022]  Open
33
Li S, Singh S, Dumesic JA, Mavrikakis M. On the nature of active sites for formic acid decomposition on gold catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00410f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Bobadilla LF, Santos JL, Ivanova S, Odriozola JA, Urakawa A. Unravelling the Role of Oxygen Vacancies in the Mechanism of the Reverse Water–Gas Shift Reaction by Operando DRIFTS and Ultraviolet–Visible Spectroscopy. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02121] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
35
Bulushev DA, Ross JR. Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2018. [DOI: 10.1080/01614940.2018.1476806] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
36
Brydon RRO, Peng A, Qian L, Kung HH, Broadbelt LJ. Microkinetic Modeling of Homogeneous and Gold Nanoparticle-Catalyzed Oxidation of Cyclooctene. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
37
Maheshwari S, Li Y, Agrawal N, Janik MJ. Density functional theory models for electrocatalytic reactions. ADVANCES IN CATALYSIS 2018. [DOI: 10.1016/bs.acat.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
38
Schimmenti R, Cortese R, Duca D, Mavrikakis M. Boron Nitride‐supported Sub‐nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study. ChemCatChem 2017. [DOI: 10.1002/cctc.201700248] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
39
CO-free hydrogen production from decomposition of formic acid over Au/Al2O3 catalysts doped with potassium ions. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
40
Jørgensen M, Grönbeck H. Connection between macroscopic kinetic measurables and the degree of rate control. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01246b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
41
Sabbe MK, Canduela-Rodriguez G, Joly JF, Reyniers MF, Marin GB. Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111). Catal Sci Technol 2017. [DOI: 10.1039/c7cy00962c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
42
Filonenko GA, Vrijburg WL, Hensen EJ, Pidko EA. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates. J Catal 2016. [DOI: 10.1016/j.jcat.2015.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
43
Choksi T, Greeley J. Partial Oxidation of Methanol on MoO3 (010): A DFT and Microkinetic Study. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01633] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
44
Li S, Scaranto J, Mavrikakis M. On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts. Top Catal 2016. [DOI: 10.1007/s11244-016-0672-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
45
Wang Y, Zhang D, Liu P, Liu C. Reexamination of CO formation during formic acid decomposition on the Pt(1 1 1) surface in the gas phase. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
46
Active sites and mechanisms for H₂O₂ decomposition over Pd catalysts. Proc Natl Acad Sci U S A 2016;113:E1973-82. [PMID: 27006504 DOI: 10.1073/pnas.1602172113] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
47
Zacharska M, Chuvilin AL, Kriventsov VV, Beloshapkin S, Estrada M, Simakov A, Bulushev DA. Support effect for nanosized Au catalysts in hydrogen production from formic acid decomposition. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00552g] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
48
Marcinkowski MD, Murphy CJ, Liriano ML, Wasio NA, Lucci FR, Sykes ECH. Microscopic View of the Active Sites for Selective Dehydrogenation of Formic Acid on Cu(111). ACS Catal 2015. [DOI: 10.1021/acscatal.5b01994] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
49
Carrasquillo-Flores R, Ro I, Kumbhalkar MD, Burt S, Carrero CA, Alba-Rubio AC, Miller JT, Hermans I, Huber GW, Dumesic JA. Reverse Water–Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. J Am Chem Soc 2015. [DOI: 10.1021/jacs.5b05945] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
50
Elnabawy AO, Rangarajan S, Mavrikakis M. Computational chemistry for NH3 synthesis, hydrotreating, and NO reduction: Three topics of special interest to Haldor Topsøe. J Catal 2015. [DOI: 10.1016/j.jcat.2014.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA