1
|
Romero Vega G, Gallo Stampino P. Bio-Based Surfactants and Biosurfactants: An Overview and Main Characteristics. Molecules 2025; 30:863. [PMID: 40005173 PMCID: PMC11858081 DOI: 10.3390/molecules30040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Natural surfactants are surface-active molecules synthesized from renewable resources (i.e., plants, animals, or microorganisms) and possess properties comparable to conventional surfactants, making them an environmentally friendly potential alternative to petrochemical surfactants. Additionally, they exhibit biological properties such as anti-microbial properties, biodegradability, and less toxicity, allowing their use in everyday products with minimal risk to human health and the environment. Based on their mode of production, natural surfactants can be classified into first-generation or bio-based surfactants and second-generation or biosurfactants, although their definition may vary depending on the author in the literature. This review offers an extensive classification of bio-based surfactants and biosurfactants, focusing on their composition, natural sources, production methods, and potential applications across various industries. Furthermore, the main challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Paola Gallo Stampino
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| |
Collapse
|
2
|
Zhong W, Su W, Li P, Li K, Wu W, Jiang B. Preparation and research progress of lignin-based supercapacitor electrode materials. Int J Biol Macromol 2024; 259:128942. [PMID: 38143066 DOI: 10.1016/j.ijbiomac.2023.128942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The reserve of lignin in the biological world is the second largest biomass resource after cellulose. Lignin has the characteristics of wide sources, low cost, and rich active components. Due to environmental pollution and energy scarcity, lignin is often used as a substitute good for petrochemical products. Lignin-based functional materials can be prepared by chemical modification or compounding, which are widely used in the fields of energy storage, chemical industry, and medicine. Among them, lignin-based carbon materials have the features of stable chemical properties, large pH application range, ideal electrical conductivity, developed pore size, and high specific surface area, which have great application prospects as supercapacitor materials. This paper mainly introduces the structural properties of lignin, the methods, and mechanisms of carbonization, pore-making, and pore-expansion, as well as the research progress of lignin-based carbon materials for supercapacitors, while looking forward to the future research direction of lignin carbon materials.
Collapse
Affiliation(s)
- Wei Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kongyan Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Bo Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Monteiro RRC, Berenguer-Murcia Á, Rocha-Martin J, Vieira RS, Fernandez-Lafuente R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol Adv 2023; 68:108215. [PMID: 37473819 DOI: 10.1016/j.biotechadv.2023.108215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The increasing worries by the inadequate use of energy and the preservation of nature are promoting an increasing interest in the production of biolubricants. After discussing the necessity of producing biolubricants, this review focuses on the production of these interesting molecules through the use of lipases, discussing the different possibilities (esterification of free fatty acids, hydroesterification or transesterification of oils and fats, transesterification of biodiesel with more adequate alcohols, estolides production, modification of fatty acids). The utilization of discarded substrates has special interest due to the double positive ecological impact (e.g., oil distillated, overused oils). Pros and cons of all these possibilities, together with general considerations to optimize the different processes will be outlined. Some possibilities to overcome some of the problems detected in the production of these interesting compounds will be also discussed.
Collapse
Affiliation(s)
- Rodolpho R C Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | - Javier Rocha-Martin
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Rodrigo S Vieira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, 60455760 Fortaleza, Brazil.
| | | |
Collapse
|
4
|
Luo Y, Ierapetritou M. Multifeedstock and Multiproduct Process Design Using Neural Network Surrogate Flexibility Constraints. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuqing Luo
- University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, Delaware19716, United States
| | - Marianthi Ierapetritou
- University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, Delaware19716, United States
| |
Collapse
|
5
|
Gozan M, Abd-Aziz S, Jenol MA. Utilization of Palm Oil Waste as a Sustainable Food Resource. HANDBOOK OF BIOREFINERY RESEARCH AND TECHNOLOGY 2023:1-20. [DOI: 10.1007/978-94-007-6724-9_40-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/17/2023] [Indexed: 09/01/2023]
|
6
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
7
|
Luo Y, Kuo MJ, Ye M, Lobo R, Ierapetritou M. Comparison of 4,4′-Dimethylbiphenyl from Biomass-Derived Furfural and Oil-Based Resource: Technoeconomic Analysis and Life-Cycle Assessment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuqing Luo
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Mi Jen Kuo
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Mingchun Ye
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Raul Lobo
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
The Twelve Principles of Green Tribology: Studies, Research, and Case Studies—A Brief Anthology. LUBRICANTS 2022. [DOI: 10.3390/lubricants10060129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sustainability has become of paramount importance, as evidenced by the increasing number of norms and regulations concerning various sectors. Due to its intrinsic trans-sectorial nature, tribology has drawn the attention of the supporters of sustainability. This discipline allows the environmental, economic, and social impacts to be decreased in a wide range of applications following the same strategies. In 2010, Nosonovsky and Bhushan drew up 12 approaches based on the 12 principles of green chemistry and the 12 principles of green engineering, defining the “12 principles of green tribology.” This review exploits the 12 principles of green tribology to fathom the developed research related to sustainability and tribology. Different approaches and innovative studies have been proposed in this short selection as references to consider for further development, pursuing the efforts of the scientific community for a sustainable future through the contribution also of tribosystems. The manuscript aims to provide practical examples of materials, lubricants, strategies, and technologies that have contributed to the overall progress of tribology, decreasing wear and friction and increasing efficiency, and at the same time promoting sustainable development, lowering toxicity, waste production, and loss of energy and resources.
Collapse
|
9
|
Abstract
Biolubricants generated from biomass and other wastes can reduce the carbon footprint of manufacturing processes and power generation. In this paper, the properties and uses of biolubricants have been compared thoroughly with conventional mineral-based lubricants. The biolubricants, which are currently based on vegetable oils, are discussed in terms of their physicochemical and thermophysical properties, stability, and biodegradability. This mini-review points out the main features of the existing biolubricants, and puts forward the case of using sustainable biolubricants, which can be generated from agro-residues via thermochemical processes. The properties, applications, and limitations of non-edible oils and waste-derived oils, such as bio-oil from pyrolysis and bio-crude from hydrothermal liquefaction, are discussed in the context of biolubricants. While the existing studies on biolubricants have mostly focused on the use of vegetable oils and some non-edible oils, there is a need to shift to waste-derived oils, which is highlighted in this paper. This perspective compares the key properties of conventional oils with different oils derived from renewable resources and wastes. In the authors’ opinion, the use of waste-derived oils is a potential future option to address the problem of the waste management and supply of biolubricant for various applications including machining, milling applications, biological applications, engine oils, and compressor oils. In order to achieve this, significant research needs to be conducted to evaluate salient properties such as viscosity, flash point, biodegradability, thermo-oxidative and storage stability of the oils, technoeconomics, and sustainability, which are highlighted in this review.
Collapse
|
10
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
11
|
O’Dea RM, Pranda PA, Luo Y, Amitrano A, Ebikade EO, Gottlieb ER, Ajao O, Benali M, Vlachos DG, Ierapetritou M, Epps TH. Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. SCIENCE ADVANCES 2022; 8:eabj7523. [PMID: 35044829 PMCID: PMC8769544 DOI: 10.1126/sciadv.abj7523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Chemocatalytic lignin valorization strategies are critical for a sustainable bioeconomy, as lignin, especially technical lignin, is one of the most available and underutilized aromatic feedstocks. Here, we provide the first report of an intensified reactive distillation–reductive catalytic deconstruction (RD-RCD) process to concurrently deconstruct technical lignins from diverse sources and purify the aromatic products at ambient pressure. We demonstrate the utility of RD-RCD bio-oils in high-performance additive manufacturing via stereolithography 3D printing and highlight its economic advantages over a conventional reductive catalytic fractionation/RCD process. As an example, our RD-RCD reduces the cost of producing a biobased pressure-sensitive adhesive from softwood Kraft lignin by up to 60% in comparison to the high-pressure RCD approach. Last, a facile screening method was developed to predict deconstruction yields using easy-to-obtain thermal decomposition data. This work presents an integrated lignin valorization approach for upgrading existing lignin streams toward the realization of economically viable biorefineries.
Collapse
Affiliation(s)
- Robert M. O’Dea
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Paula A. Pranda
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yuqing Luo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Alice Amitrano
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Elvis O. Ebikade
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Catalysis Center for Energy Innovation, 221 Academy St., Newark, DE 19716, USA
| | - Eric R. Gottlieb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Olumoye Ajao
- Natural Resources Canada, CanmetENERGY, P.O. Box 4800, Varennes, Quebec J3X 1S6, Canada
| | - Marzouk Benali
- Natural Resources Canada, CanmetENERGY, P.O. Box 4800, Varennes, Quebec J3X 1S6, Canada
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Catalysis Center for Energy Innovation, 221 Academy St., Newark, DE 19716, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Catalysis Center for Energy Innovation, 221 Academy St., Newark, DE 19716, USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
12
|
Bhosekar A, Athaley A, Ierapetritou M. Multiobjective Modular Biorefinery Configuration under Uncertainty. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atharv Bhosekar
- GAMS Development Corporation, 2751 Prosperity Ave Suite 210, Fairfax, Virginia 22031, United States
| | - Abhay Athaley
- Department of Chemical & Bio-molecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marianthi Ierapetritou
- Department of Chemical & Bio-molecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Luo Y, Ierapetritou M. Comparison between Different Hybrid Life Cycle Assessment Methodologies: A Review and Case Study of Biomass-based p-Xylene Production. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuqing Luo
- University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, Delaware 19716, United States
| | - Marianthi Ierapetritou
- University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Zheng J, Hu L, He X, Liu Y, Zheng X, Tao S, Lin X. Evaluation of Pore Structure of Polarity-Controllable Post-Cross-Linked Adsorption Resins on the Adsorption Performance of 5-Hydroxymethylfurfural in Both Single- and Ternary-Component Systems. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiayi Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Lei Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xianda He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Yao Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaojie Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Shunhui Tao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|