1
|
Wu G, Peng Z, Li Q, Zhang X, Geng S, Wang S, Lu E, Liu Y, Yuan C, Wei X, Liu Y. Transcriptome analyses for revealing leaf abscission of Cyclocarya paliurus stem segments in vitro. BMC Genomics 2025; 26:208. [PMID: 40033193 PMCID: PMC11874125 DOI: 10.1186/s12864-025-11394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Leaf abscission of Cyclocarya paliurus stem segments in vitro is very serious, and more than 90% of the leaves gradually fall off with prolonged culture time, which hinders breeding. This study investigated the molecular mechanism of leaf abscission. The emerged leaves of C. paliurus stem segments were cultured for 22 days (T0) in vitro; leaves at 27 days (T1) and leaves that had fallen after ≥ 32 days (T2) were used as materials for analysis of the physiological characteristics and transcriptome data. During the leaf abscission process of C. paliurus, the Indole-3-acetic acid (IAA) content gradually decreased, whereas the carotenoid, 1-aminocyclopropane-1-carboxylic acid (ACC) and lignin contents and pectinase and cellulase activities significantly increased; 1807 and 10,908 DEGs were obtained in T0 vs T1 and T1 vs T2, respectively. The plant hormone signal transduction pathway, phenylpropanoid biosynthesis pathway and flavonoid biosynthesis pathway were significantly enriched in the KEGG metabolic pathway analysis. The differential expression of related genes affected AUX and Ethylene (ETH) biosynthesis and signal transduction, lignin synthesis, ROS metabolism, leaf color changes. Weighted gene coexpression network analysis (WGCNA) identified 10 hub genes (U-box protein, ERF5, ERF109, ERF4, SAUR36, CML19, MYC2-like,SPHK1, TOE3, POD55) that interact to activate abscission signaling, which subsequently influences the genes expression involved in the biosynthesis and signal transduction of auxin and ethylene; this resulted in an imbalance of endogenous hormone levels in the leaves, leading to the upregulation of pectinase, cellulase, and lignin biosynthesis genes and acceleration of the rupture of the abscission zone (AZ) cell and vascular cell wall, which ultimately led to leaf abscission. The present study illustrates a regulatory mechanism of leaf abscission of C. paliurus stem segments in vitro, which provides potential application value for guiding the inhibition of leaf abscission in vitro.
Collapse
Affiliation(s)
- Gaoyin Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China
| | - Zhongcheng Peng
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China
| | - Qiuying Li
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China
| | - Xiang Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China
| | - Shuanggui Geng
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China
| | - Shuang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China
| | - Enrong Lu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China
| | - Yingying Liu
- Guizhou Institute of Biology, Guiyang City, Guizhou Province, 550027, China
| | - Congjun Yuan
- Guizhou Academy of Forestry, Guiyang, Guizhou Province, 550005, China
| | - Xiaoli Wei
- College of Forestry, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, 550025, China.
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
2
|
Yu Y. Histological Staining and Hydrogen Peroxide Visualization of the Abscission Zone in Setaria viridis. Methods Mol Biol 2025; 2916:61-71. [PMID: 40366586 DOI: 10.1007/978-1-0716-4470-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The abscission zone (AZ) consists of specialized cell layers where cell separation or breakage occurs that result in organ detachment. Microscopic observation of the AZ is crucial for understanding its function. The AZ undergoes cellular and physiological changes prior to abscission, such as cell death, loss of chlorophyll, and the production of reactive oxygen species (ROS). These changes can be visualized using specific dyes and indicators under light or fluorescent microscopes. However, one challenge of using these dyes is their inefficient penetration into the tissue, especially when the epidermal layer has thick secondary cell walls. In this chapter, a detailed protocol to overcome this challenge is described. Using the fruit AZ of Setaria viridis, in which the epidermal cell wall is thick and lignified, we gently fix the dissected tissue, embed it in the Cryomatrix, and trim off the outer cell layers using a cryostat. The tissue with exposed inner cells can then be stained with fluorescent dyes to visualize organelles of interest, or 3,3'-diaminobenzidine (DAB) to visualize hydrogen peroxide accumulated in the tissue.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, Saint Louis, MO, USA.
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK.
| |
Collapse
|
3
|
Lv Y, Yun L, Jia X, Mu Y, Li Z. Transcriptome Analysis of the Seed Shattering Mechanism in Psathyrostachys juncea Using Full-Length Transcriptome Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:3474. [PMID: 39771172 PMCID: PMC11728615 DOI: 10.3390/plants13243474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. Psathyrostachys juncea, a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application. To investigate the mechanisms underlying SS, second-generation Illumina sequencing and third-generation PacBio sequencing were conducted on abscission zone tissues of P. juncea at 7, 14, 21, and 28 days after heading. GO enrichment analysis identified several significant biological processes, including the "cell wall macromolecule catabolic process", "cell wall polysaccharide catabolic process", "hemicellulose catabolic process", and "xylan catabolic process", all involved in cell wall degradation. KEGG enrichment analysis showed that differentially expressed genes were predominantly enriched in pathways related to "starch and sucrose metabolism", "fructose and mannose metabolism", "phenylpropanoid biosynthesis", "pentose and glucuronate interconversions", and "galactose metabolism", each linked to both the synthesis and degradation of the cell wall. Further analysis of the "starch and sucrose metabolism" pathway revealed genes encoding fructokinase, hexokinase, β-glucosidase, sucrose phosphate synthase, sucrose synthase, and endoglucanase, all of which affected cellulose content. Reduced cellulose content can alter cell wall structure, leading to SS. These findings provide new insights into the regulation of SS in P. juncea and offer valuable references for other species within the Poaceae family.
Collapse
Affiliation(s)
| | - Lan Yun
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.L.); (X.J.); (Y.M.); (Z.L.)
| | | | | | | |
Collapse
|
4
|
Zheng L, Wen Y, Lin Y, Tian J, Shaobai J, Hao Z, Wang C, Sun T, Wang L, Chen C. Phytohormonal dynamics in the abscission zone of Korla fragrant pear during calyx abscission: a visual study. FRONTIERS IN PLANT SCIENCE 2024; 15:1452072. [PMID: 39439514 PMCID: PMC11493647 DOI: 10.3389/fpls.2024.1452072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Introduction Phytohormones play a crucial role in regulating the abscission of plant organs and tissues. Methods In this study, the ultrastructure of the sepals of Korla fragrant pears was observed using a transmission electron microscope, and high-performance liquid and gas chromatography were used to analyze the dynamic changes of phytohormones in the abscission zone during the calyx abscission process of Korla fragrant pears, and mass spectrometry imaging was applied to ascertain the spatial distribution of phytohormones. Results The results revealed that the mitochondria in the abscission zone of the decalyx fruits were regularly distributed around the cell wall, and the chloroplasts were moderately present. In contrast, in the persistent calyx fruit, the corresponding parts of the abscission zone showed a scattered distribution of mitochondria within the cells, and there was a higher number of chloroplasts, which also contained starch granules inside. Mass spectrometry imaging revealed that ABA was enriched in the abscission zone of the decalyx fruit, and their ionic signal intensities were significantly stronger than those of the persistent calyx fruit. However, the ionic signal intensities of Indole-3-acetic acid (IAA) and Gibberellin A3 (GA3) of the persistent calyx fruit were significantly stronger than those in the abscission zone of the decalyx fruit and were concentrated in the persistent calyx fruit. 1-Aminocyclopropanecarboxylic Acid (ACC) did not show distinct regional distribution in both the decalyx and persistent calyx fruits. Furthermore, before the formation of the abscission zone, the levels of IAA, GA3, and zeatin (ZT) in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 37.9%, 57.7%, and 33.0%, respectively, while the levels of abscisic acid (ABA) and ethylene (ETH) were significantly higher by 21.9% and 25.0%, respectively. During the formation of the abscission zone, the levels of IAA, GA3, and ZT in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 41.7%, 71.7%, and 24.6%, respectively, while the levels of ABA and ETH were significantly higher by 15.2% and 80.0%, respectively. After the formation of the abscission zone, the levels of IAA and GA3 in the abscission zone of the decalyx fruits were lower than those in the persistent calyx fruits by 20.8% and 47.8%, respectively, while the levels of ABA and ETH were higher by 271.8% and 26.9%, respectively. In summary, during the calyx abscission process of Korla fragrant pears, IAA and GA3 in the abscission zone inhibited abscission, while ABA and ETH promoted calyx abscission. These research findings enrich the understanding of the regulatory mechanism of plant hormones on calyx abscission and provide a theoretical basis for the study of exogenous plant growth regulators for regulating calyx abscission in Korla fragrant pear.
Collapse
Affiliation(s)
- Lingling Zheng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yue Wen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Lin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jia Tian
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Junjie Shaobai
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhichao Hao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chunfeng Wang
- Korla Fragrant Pear Research Centre, Korla, Xinjiang, China
| | - Tianyu Sun
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lei Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Yu Y, Kellogg EA. Multifaceted mechanisms controlling grain disarticulation in the Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102564. [PMID: 38830336 DOI: 10.1016/j.pbi.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
Cereal shattering and threshability, both involving disarticulation of grains from the mother plant, are important traits for cereal domestication and improvement. Recent studies highlighted diverse mechanisms influencing shattering and threshability, either through development of the disarticulation zone or floral structures enclosing or supporting the disarticulation unit. Differential lignification in the disarticulation zone is essential for rice shattering but not required for many other grasses. During shattering, the disarticulation zone undergoes either abscission leading to cell separation or cell breakage. Threshability can be affected by the morphology and toughness of the enclosing floral structures, and in some species, by the inherent weakness of the disarticulation zone. Fine-tuning shattering and threshability is essential for breeding wild and less domesticated cereals.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA.
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA
| |
Collapse
|
6
|
Li X, Lowey D, Lessard J, Caicedo AL. Comparative histology of abscission zones reveals the extent of convergence and divergence in seed shattering in weedy and cultivated rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4837-4850. [PMID: 38972665 DOI: 10.1093/jxb/erae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
The modification of seed shattering has been a recurring theme in rice evolution. The wild ancestor of cultivated rice disperses its seeds, but reduced shattering was selected during multiple domestication events to facilitate harvesting. Conversely, selection for increased shattering occurred during the evolution of weedy rice, a weed invading cultivated rice fields that has originated multiple times from domesticated ancestors. Shattering requires formation of a tissue known as the abscission zone (AZ), but how the AZ has been modified throughout rice evolution is unclear. We quantitatively characterized the AZ characteristics of relative length, discontinuity, and intensity in 86 cultivated and weedy rice accessions. We reconstructed AZ evolutionary trajectories and determined the degree of convergence among different cultivated varieties and among independent weedy rice populations. AZ relative length emerged as the best feature to distinguish high and low shattering rice. Cultivated varieties differed in average AZ morphology, revealing lack of convergence in how shattering reduction was achieved during domestication. In contrast, weedy rice populations typically converged on complete AZs, irrespective of origin. By examining AZ population-level morphology, our study reveals its evolutionary plasticity, and suggests that the genetic potential to modify the ecologically and agronomically important trait of shattering is plentiful in rice lineages.
Collapse
Affiliation(s)
- Xiang Li
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Daniel Lowey
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jessica Lessard
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ana L Caicedo
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Kavka M, Balles A, Böhm C, Dehmer KJ, Fella C, Rose F, Saal B, Schulze S, Willner E, Melzer M. Phenotypic screening of seed retention and histological analysis of the abscission zone in Festuca pratensis and Lolium perenne. BMC PLANT BIOLOGY 2024; 24:577. [PMID: 38890560 PMCID: PMC11184695 DOI: 10.1186/s12870-024-05231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.
Collapse
Affiliation(s)
- Mareike Kavka
- Genebank, Satellite Collections North, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Inselstraße 9, 23999, Malchow/Poel, Germany.
| | - Andreas Balles
- Development Center X-Ray Technology, Magnetic Resonance and X-Ray Imaging, Fraunhofer IIS, Josef- Martin-Weg 63, 97074, Würzburg, Germany
| | - Christof Böhm
- Saatzucht Steinach GmbH und Co. KG, Wittelsbacherstraße 15, 94377, Steinach, Germany
| | - Klaus J Dehmer
- Genebank, Satellite Collections North, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Inselstraße 9, 23999, Malchow/Poel, Germany
| | - Christian Fella
- Development Center X-Ray Technology, Magnetic Resonance and X-Ray Imaging, Fraunhofer IIS, Josef- Martin-Weg 63, 97074, Würzburg, Germany
| | - Felix Rose
- Physiology and Cell Biology, Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Gatersleben, Germany
| | - Bernhard Saal
- PlantaServ GmbH, Erdinger Straße 82a, 85356, Freising, Germany
| | - Sabine Schulze
- Saatzucht Steinach GmbH und Co. KG, Klockower Straße 1, 17219, Ankershagen, Germany
| | - Evelin Willner
- Genebank, Satellite Collections North, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Inselstraße 9, 23999, Malchow/Poel, Germany
| | - Michael Melzer
- Physiology and Cell Biology, Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Gatersleben, Germany
| |
Collapse
|
8
|
Khodaverdi M, Mullinger MD, Shafer HR, Preston JC. Melica as an emerging model system for comparative studies in temperate Pooideae grasses. ANNALS OF BOTANY 2023; 132:1175-1190. [PMID: 37696761 PMCID: PMC10902897 DOI: 10.1093/aob/mcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS Pooideae grasses contain some of the world's most important crop and forage species. Although much work has been conducted on understanding the genetic basis of trait diversification within a few annual Pooideae, comparative studies at the subfamily level are limited by a lack of perennial models outside 'core' Pooideae. We argue for development of the perennial non-core genus Melica as an additional model for Pooideae, and provide foundational data regarding the group's biogeography and history of character evolution. METHODS Supplementing available ITS and ndhF sequence data, we built a preliminary Bayesian-based Melica phylogeny, and used it to understand how the genus has diversified in relation to geography, climate and trait variation surveyed from various floras. We also determine biomass accumulation under controlled conditions for Melica species collected across different latitudes and compare inflorescence development across two taxa for which whole genome data are forthcoming. KEY RESULTS Our phylogenetic analyses reveal three strongly supported geographically structured Melica clades that are distinct from previously hypothesized subtribes. Despite less geographical affinity between clades, the two sister 'Ciliata' and 'Imperfecta' clades segregate from the more phylogenetically distant 'Nutans' clade in thermal climate variables and precipitation seasonality, with the 'Imperfecta' clade showing the highest levels of trait variation. Growth rates across Melica are positively correlated with latitude of origin. Variation in inflorescence morphology appears to be explained largely through differences in secondary branch distance, phyllotaxy and number of spikelets per secondary branch. CONCLUSIONS The data presented here and in previous studies suggest that Melica possesses many of the necessary features to be developed as an additional model for Pooideae grasses, including a relatively fast generation time, perenniality, and interesting variation in physiology and morphology. The next step will be to generate a genome-based phylogeny and transformation tools for functional analyses.
Collapse
Affiliation(s)
- Masoumeh Khodaverdi
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Mark D Mullinger
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Hannah R Shafer
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
9
|
Wu H, He Q, He B, He S, Zeng L, Yang L, Zhang H, Wei Z, Hu X, Hu J, Zhang Y, Shang L, Wang S, Cui P, Xiong G, Qian Q, Wang Q. Gibberellin signaling regulates lignin biosynthesis to modulate rice seed shattering. THE PLANT CELL 2023; 35:4383-4404. [PMID: 37738159 PMCID: PMC10689197 DOI: 10.1093/plcell/koad244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.
Collapse
Affiliation(s)
- Hao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bing He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuyi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | | | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhaoran Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingming Hu
- College of Agronomy, Anhui Agricultural University, Heifei 230026, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center of Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Suikang Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agricultural Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Yu Y, Hu H, Voytas DF, Doust AN, Kellogg EA. The YABBY gene SHATTERING1 controls activation rather than patterning of the abscission zone in Setaria viridis. THE NEW PHYTOLOGIST 2023; 240:846-862. [PMID: 37533135 DOI: 10.1111/nph.19157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023]
Abstract
Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Daniel F Voytas
- College of Biological Sciences, University of Minnesota, St Paul, MN, 55108, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
11
|
Yu Y, Beyene G, Villmer J, Duncan KE, Hu H, Johnson T, Doust AN, Taylor NJ, Kellogg EA. Grain shattering by cell death and fracture in Eragrostis tef. PLANT PHYSIOLOGY 2023; 192:222-239. [PMID: 36756804 PMCID: PMC10152664 DOI: 10.1093/plphys/kiad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Justin Villmer
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Keith E Duncan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Toni Johnson
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
12
|
Crick J, Corrigan L, Belcram K, Khan M, Dawson JW, Adroher B, Li S, Hepworth SR, Pautot V. Floral organ abscission in Arabidopsis requires the combined activities of three TALE homeodomain transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6150-6169. [PMID: 35689803 DOI: 10.1093/jxb/erac255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Floral organ abscission is a separation process in which sepals, petals, and stamens detach from the plant at abscission zones. Here, we investigated the collective role of three amino-acid-loop-extension (TALE) homeobox genes ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1), KNAT6 (for KNOTTED LIKE from Arabidopsis thaliana) and KNAT2, which form a module that patterns boundaries under the regulation of BLADE-ON-PETIOLE 1 and 2 (BOP1/2) co-activators. These TALE homeodomain transcription factors were shown to maintain boundaries in the flower, functioning as a unit to coordinate the growth, patterning, and activity of abscission zones. Together with BOP1 and BOP2, ATH1 and its partners KNAT6 and KNAT2 collectively contribute to the differentiation of lignified and separation layers of the abscission zone. The genetic interactions of BOP1/2 and ATH1 with INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) were also explored. We showed that BOP1/2 co-activators and ATH1 converge with the IDA signalling pathway to promote KNAT6 and KNAT2 expression in the abscission zone and cell separation. ATH1 acts as a central regulator in floral organ abscission as it controls the expression of other TALE genes in abscission zone cells.
Collapse
Affiliation(s)
- Jennifer Crick
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura Corrigan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Madiha Khan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jeff W Dawson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sibei Li
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Véronique Pautot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
13
|
McSteen P, Kellogg EA. Molecular, cellular, and developmental foundations of grass diversity. Science 2022; 377:599-602. [PMID: 35926032 DOI: 10.1126/science.abo5035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans have cultivated grasses for food, feed, beverages, and construction materials for millennia. Grasses also dominate the landscape in vast parts of the world, where they have adapted morphologically and physiologically, diversifying to form ~12,000 species. Sequences of hundreds of grass genomes show that they are essentially collinear; nonetheless, not all species have the same complement of genes. Here, we focus on the molecular, cellular, and developmental bases of grain yield and dispersal-traits that are essential for domestication. Distinct genes, networks, and pathways were selected in different crop species, reflecting underlying genomic diversity. With increasing genomic resources becoming available in nondomesticated species, we anticipate advances in coming years that illuminate the ecological and economic success of the grasses.
Collapse
Affiliation(s)
- Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | | |
Collapse
|
14
|
Mylo MD, Hesse L, Masselter T, Leupold J, Drozella K, Speck T, Speck O. Morphology and Anatomy of Branch-Branch Junctions in Opuntia ficus-indica and Cylindropuntia bigelovii: A Comparative Study Supported by Mechanical Tissue Quantification. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112313. [PMID: 34834679 PMCID: PMC8618873 DOI: 10.3390/plants10112313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 05/09/2023]
Abstract
The Opuntioideae include iconic cacti whose lateral branch-branch junctions are intriguing objects from a mechanical viewpoint. We have compared Opuntia ficus-indica, which has stable branch connections, with Cylindropuntia bigelovii, whose side branches abscise under slight mechanical stress. To determine the underlying structures and mechanical characteristics of these stable versus shedding cacti junctions, we conducted magnetic resonance imaging, morphometric and anatomical analyses of the branches and tensile tests of individual tissues. The comparison revealed differences in geometry, shape and material properties as follows: (i) a more pronounced tapering of the cross-sectional area towards the junctions supports the abscission of young branches of C. bigelovii. (ii) Older branches of O. ficus-indica form, initially around the branch-branch junctions, collar-shaped periderm tissue. This secondary coverage mechanically stiffens the dermal tissue, giving a threefold increase in strength and a tenfold increase in the elastic modulus compared with the epidermis. (iii) An approximately 200-fold higher elastic modulus of the vascular bundles of O. ficus-indica is a prerequisite for the stable junction of its young branches. Our results provide, for both biological and engineered materials systems, important insights into the geometric characteristics and mechanical properties of branching joints that are either stable or easily detachable.
Collapse
Affiliation(s)
- Max D. Mylo
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-2604
| | - Linnea Hesse
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Tom Masselter
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
| | - Jochen Leupold
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstraße 5a, D-79106 Freiburg, Germany;
| | - Kathrin Drozella
- Faculty of Environment and Natural Resources, Bertoldstraße 17, D-79098 Freiburg, Germany;
| | - Thomas Speck
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Olga Speck
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
15
|
Kellogg EA. The rachis cannot hold, plants fall apart. A commentary on: 'The unique disarticulation layer formed in the rachis of Aegilops longissima likely results from the spatial co-expression of Btr1 and Btr2'. ANNALS OF BOTANY 2021; 127:vi-vii. [PMID: 33336239 PMCID: PMC7872103 DOI: 10.1093/aob/mcaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This article comments on: Xiaoxue Zeng, Gang Chen, Lei Wang, Akemi Tagiri, Shinji Kikuchi, Hidenori Sassa and Takao Komatsuda, The unique disarticulation layer formed in the rachis of Aegilops longissima probably results from the spatial co-expression of Btr1 and Btr2, Annals of Botany, Volume 127, Issue 3, 16 February 2021, Pages 297–304, https://doi.org/10.1093/aob/mcaa147
Collapse
|
16
|
Zeng X, Tagiri A, Kikuchi S, Sassa H, Komatsuda T. The Ectopic Expression of Btr2 in Aegilops tauschii Switches the Disarticulation Layer From Above to Below the Rachis Node. FRONTIERS IN PLANT SCIENCE 2020; 11:582622. [PMID: 33240300 PMCID: PMC7680762 DOI: 10.3389/fpls.2020.582622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 05/31/2023]
Abstract
Seed dispersal among wild species belonging to the tribe Triticeae is typically achieved by the formation of a brittle rachis. The trait relies on the development of a disarticulation layer, most frequently above the rachis node (resulting in wedge type dispersal units), but in some species below the rachis node (resulting in barrel type dispersal units). The genes responsible for the former type are the complementary pair Btr1 and Btr2, while the genetic basis of the latter type has yet to be determined. Aegilops tauschii forms barrel type dispersal units and previous study showed this species lacked an intact copy of Btr1. Here it has been demonstrated that Ae. tauschii carries two of Btr2; and that Btr2 transcript is present in a region below the rachis node where the abscission zone forms. The implication is that in this species, the Btr2 product is involved in the formation of barrel type dispersal units.
Collapse
Affiliation(s)
- Xiaoxue Zeng
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Akemi Tagiri
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|