1
|
Kunz CF, Goldbecker ES, de Vries J. Functional genomic perspectives on plant terrestrialization. Trends Genet 2025:S0168-9525(25)00047-2. [PMID: 40155238 DOI: 10.1016/j.tig.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Plant evolutionary research has made leaps in exploring the deep evolutionary roots of embryophytes. A solid phylogenomic framework was established, allowing evolutionary inferences. Comparative genomic approaches revealed that many genes coding for transcription factors, morphogenetic regulators, specialized metabolic enzymes, phytohormone signaling, and more are not innovations of land plants but have a deep streptophyte algal ancestry. Are these just spurious homologs, or do they actualize traits we deem important in embryophytes? Building on streptophyte algae genome data, current endeavors delve into the functional significance of whole cohorts of homologs by leveraging the power of comparative high-throughput approaches. This ushered in the identification of recurrent themes in function, ultimately providing a functional genomic definition for the toolkit of plant terrestrialization.
Collapse
Affiliation(s)
- Cäcilia F Kunz
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goldschmidtstrasse 1, 37077 Goettingen, Germany.
| | - Elisa S Goldbecker
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goldschmidtstrasse 1, 37077 Goettingen, Germany.
| | - Jan de Vries
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goldschmidtstrasse 1, 37077 Goettingen, Germany; Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstrasse 1, 37077 Goettingen, Germany; Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goldschmidtstrasse 1, 37077 Goettingen, Germany.
| |
Collapse
|
2
|
Petroll R, Varshney D, Hiltemann S, Finke H, Schreiber M, de Vries J, Rensing SA. Enhanced sensitivity of TAPscan v4 enables comprehensive analysis of streptophyte transcription factor evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17184. [PMID: 39666589 PMCID: PMC11712027 DOI: 10.1111/tpj.17184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Transcription-associated proteins (TAPs) fulfill multiple functions in regulatory and developmental processes and display lineage-specific evolution. TAPscan is a comprehensive and highly reliable tool for genome-wide TAP annotation via domain profiles. Here, we present TAPscan v4, including an updated web interface (https://tapscan.plantcode.cup.uni-freiburg.de/), which enables an in-depth representation of the distribution of 138 TAP families across 678 species from diverse groups of organisms, with a focus on Archaeplastida (plants in the wide sense). With this release, we also make the underlying "Genome Zoo" available, a curated protein data set with scripts and metadata. Eighteen new TAP (sub)families were added as part of the update. Nine of those were gained in the most recent common ancestor of the Streptophyta (comprising streptophyte algae and land plants), or within the streptophyte algae. More than one-third of all detected TAP family gains were identified during the evolution of streptophyte algae, before the emergence of land plants, and are thus likely to have been significant for plant terrestrialization. The TAP complement of the Zygnematophyceae was identified to be the most similar to that of land plants, consistent with the finding that this lineage is sister to land plants. Overall, our data retrace the evolution of streptophyte TAPs, allowing us to pinpoint the regulatory repertoire of the earliest land plants.
Collapse
Affiliation(s)
- Romy Petroll
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
- Department of Algal Development and EvolutionMax Planck Institute for Biology TübingenTübingen72076Germany
| | - Deepti Varshney
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and PharmacyUniversity of FreiburgFreiburg79104Germany
| | - Saskia Hiltemann
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and PharmacyUniversity of FreiburgFreiburg79104Germany
- Central Data FacilityUniversity of FreiburgFreiburg79108Germany
| | - Hermann Finke
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
| | - Mona Schreiber
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
- Plant Ecology & Geobotany, Department of BiologyUniversity of MarburgMarburg35043Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied BioinformaticsUniversity of GoettingenGoldschmidtstr. 1Goettingen37077Germany
- University of Goettingen, Campus Institute Data Science (CIDAS)Goldschmidstr. 1Goettingen37077Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB)Justus‐von‐Liebig‐Weg 11Goettingen37077Germany
| | - Stefan A. Rensing
- Plant Cell Biology, Department of BiologyUniversity of MarburgMarburg35043Germany
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and PharmacyUniversity of FreiburgFreiburg79104Germany
- Central Data FacilityUniversity of FreiburgFreiburg79108Germany
| |
Collapse
|
3
|
Ferranti DA, Delwiche CF. Investigating the evolution of green algae with a large transcriptomic data set. JOURNAL OF PHYCOLOGY 2024; 60:1406-1419. [PMID: 39404089 DOI: 10.1111/jpy.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 12/28/2024]
Abstract
The colonization of land by plants approximately 450-500 million years ago (Mya) is one of the most important events in the history of life on Earth. Land plants, hereafter referred to as "embryophytes," comprise the foundation of every terrestrial biome, making them an essential lineage for the origin and maintenance of biodiversity. The embryophytes form a monophyletic clade within one of the two major phyla of the green algae (Viridiplantae), the Streptophyta. Estimates from fossil data and molecular clock analyses suggest the Streptophyte algae (Charophytes) diverged from the other main phylum of green algae, the Chlorophyta, as much as 1500 Mya. Here we present a phylogenetic analysis using transcriptomic and genomic data of 62 green algae and embryophyte operational taxonomic units, 31 of which were assembled de novo for this project. We have focused on identifying the charophyte lineage that is sister to embryophytes, and show that the Zygnematophyceae have the strongest support, followed by the Charophyceae. Furthermore, we have examined amino acid and codon usage across the tree and determined these data broadly follow the phylogenetic tree. We concluded by searching the data set for protein domains and gene families known to be important in embryophytes. Many of these domains and genes have homologous sequences in the charophyte lineages, giving insight into the processes that underlay the colonization of the land by plants. This provides new insights into green algal diversification, identifies previously unknown attributes of genome evolution within the group, and shows how functional mechanisms have evolved over time.
Collapse
Affiliation(s)
- David A Ferranti
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Permann C, Holzinger A. Zygospore formation in Zygnematophyceae predates several land plant traits. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230356. [PMID: 39343014 PMCID: PMC11449217 DOI: 10.1098/rstb.2023.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Recent research on a special type of sexual reproduction and zygospore formation in Zygnematophyceae, the sister group of land plants, is summarized. Within this group, gamete fusion occurs by conjugation. Zygospore development in Mougeotia, Spirogyra and Zygnema is highlighted, which has recently been studied using Raman spectroscopy, allowing chemical imaging and detection of changes in starch and lipid accumulation. Three-dimensional reconstructions after serial block-face scanning electron microscopy (SBF-SEM) or focused ion beam SEM (FIB-SEM) made it possible to visualize and quantify cell wall and organelle changes during zygospore development. The zygospore walls undergo strong modifications starting from uniform thin cell walls to a multilayered structure. The mature cell wall is composed of a cellulosic endospore and exospore and a central mesospore built up by aromatic compounds. In Spirogyra, the exospore and endospore consist of thick layers of helicoidally arranged cellulose fibrils, which are otherwise only known from stone cells of land plants. While starch is degraded during maturation, providing building blocks for cell wall formation, lipid droplets accumulate and fill large parts of the ripe zygospores, similar to spores and seeds of land plants. Overall, data show similarities between streptophyte algae and embryophytes, suggesting that the genetic toolkit for many land plant traits already existed in their shared algal ancestor. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| |
Collapse
|
5
|
Kunz CF, de Vries S, de Vries J. Plant terrestrialization: an environmental pull on the evolution of multi-sourced streptophyte phenolics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230358. [PMID: 39343031 PMCID: PMC11528360 DOI: 10.1098/rstb.2023.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 10/01/2024] Open
Abstract
Phenolic compounds of land plants are varied: they are chemodiverse, are sourced from different biosynthetic routes and fulfil a broad spectrum of functions that range from signalling phytohormones, to protective shields against stressors, to structural compounds. Their action defines the biology of land plants as we know it. Often, their roles are tied to environmental responses that, however, impacted already the algal progenitors of land plants, streptophyte algae. Indeed, many streptophyte algae successfully dwell in terrestrial habitats and have homologues for enzymatic routes for the production of important phenolic compounds, such as the phenylpropanoid pathway. Here, we synthesize what is known about the production of specialized phenolic compounds across hundreds of millions of years of streptophyte evolution. We propose an evolutionary scenario in which selective pressures borne out of environmental cues shaped the chemodiversity of phenolics in streptophytes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Cäcilia F. Kunz
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goettingen37077, Germany
| |
Collapse
|
6
|
Fernie AR, de Vries S, de Vries J. Evolution of plant metabolism: the state-of-the-art. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230347. [PMID: 39343029 PMCID: PMC11449224 DOI: 10.1098/rstb.2023.0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024] Open
Abstract
Immense chemical diversity is one of the hallmark features of plants. This chemo-diversity is mainly underpinned by a highly complex and biodiverse biochemical machinery. Plant metabolic enzymes originated and were inherited from their eukaryotic and prokaryotic ancestors and further diversified by the unprecedentedly high rates of gene duplication and functionalization experienced in land plants. Unlike prokaryotic microbes, which display frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced relatively few gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner using existing networks as a starting point and under various evolutionary constraints. That said, until recently, the evolution of only a handful of metabolic traits had been extensively investigated and as such, the evolution of metabolism has received a fraction of the attention of, the evolution of development, for example. Advances in metabolomics and next-generation sequencing have, however, recently led to a deeper understanding of how a wide range of plant primary and specialized (secondary) metabolic pathways have evolved both as a consequence of natural selection and of domestication and crop improvement processes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
7
|
LoRicco JG, Bagdan K, Sgambettera G, Malone S, Tomasi T, Lu I, Domozych DS. Chemically induced phenotype plasticity in the unicellular zygnematophyte, Penium margaritaceum. PROTOPLASMA 2024; 261:1233-1249. [PMID: 38967680 PMCID: PMC11511715 DOI: 10.1007/s00709-024-01962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Phenotypic plasticity allows a plant cell to alter its structure and function in response to external pressure. This adaptive phenomenon has also been important in the evolution of plants including the emergence of land plants from a streptophyte alga. Penium margaritaceum is a unicellular zygnematophyte (i.e., the group of streptophyte algae that is sister to land plants) that was employed in order to study phenotypic plasticity with a focus on the role of subcellular expansion centers and the cell wall in this process. Live cell fluorescence labeling, immunofluorescence labeling, transmission electron microscopy, and scanning electron microscopy showed significant subcellular changes and alterations to the cell wall. When treated with the actin-perturbing agent, cytochalasin E, cytokinesis is arrested and cells are transformed into pseudo-filaments made of up to eight or more cellular units. When treated with the cyclin-dependent kinase (CDK) inhibitor, roscovitine, cells converted to a unique phenotype with a narrow isthmus zone.
Collapse
Affiliation(s)
- Josephine G LoRicco
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA.
| | - Kaylee Bagdan
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Gabriel Sgambettera
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Stuart Malone
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Tawn Tomasi
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Iris Lu
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, 518 North Broadway, Saratoga Springs, NY, 12866, USA
| |
Collapse
|
8
|
Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. THE PLANT CELL 2024; 36:4014-4035. [PMID: 38567528 PMCID: PMC11448915 DOI: 10.1093/plcell/koae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes (TMs) that convert sunlight into chemical energy. These membranes house PSII and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, TMs have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas TMs in cyanobacteria are relatively simple, they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of TM architectures in phototrophs and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.
Collapse
Affiliation(s)
| | | | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Bierenbroodspot MJ, Pröschold T, Fürst-Jansen JMR, de Vries S, Irisarri I, Darienko T, de Vries J. Phylogeny and evolution of streptophyte algae. ANNALS OF BOTANY 2024; 134:385-400. [PMID: 38832756 PMCID: PMC11341676 DOI: 10.1093/aob/mcae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). Although Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of probably >5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes, hence particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae relative to land plants, but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits, such as intricate signalling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants but were bequeathed from their algal progenitors.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Thomas Pröschold
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Research Department for Limnology, University of Innsbruck, Mondseestr. 9, 5310 Mondsee, Austria
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- Section of Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Department of Experimental Phycology and Culture Collection of Algae, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstraße 1, 37077 Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| |
Collapse
|
10
|
Renner SS, Sokoloff DD. The sexual lability hypothesis for the origin of the land plant generation cycle. Curr Biol 2024; 34:R697-R707. [PMID: 39043145 DOI: 10.1016/j.cub.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The evolution of the land plant alternation of generations has been an open question for the past 150 years. Two hypotheses have dominated the discussion: the antithetic hypothesis, which posits that the diploid sporophyte generation arose de novo and gradually increased in complexity, and the homologous hypothesis, which holds that land plant ancestors had independently living sporophytes and haploid gametophytes of similar complexity. Changes in ploidy levels were unknown to early researchers. The antithetic hypothesis is contradicted by generation cycles in Lower Devonian Rhynie chert plants, whose sporophytes and gametophytes have similar morphologies and by some Silurian sporophytes whose complexity exceeds that of Rhynie chert sporophytes. The oldest unambiguous bryophyte gametophytes (thalli) are from the upper Middle Devonian, with an unconnected sporophyte nearby. Based on the 2024 discovery that conjugate algae are paraphyletic to land plants, we present a new hypothesis for the evolution of the land plant generation cycle, focusing on labile ploidy levels and types of reproduction found in conjugate algae. Our 'sexual lability' hypothesis assumes a period of unstable generation cycles (as regards ploidy), likely with predominant clonal growth, as is common in conjugate algae, resulting in sporophytes and gametophytes of similar morphology. When sexual reproduction became stabilized, the timing of gamete fusion, meiosis, and resistant wall formation, which are heterochronic in some conjugate algae, became standardized, with wall formation permanently delayed. In our scenario, independently living adult sporophytes are the land plant ancestral condition, and life-long sporophyte retention on the gametophyte is a bryophyte apomorphy.
Collapse
Affiliation(s)
- Susanne S Renner
- Department of Biology, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| | - Dmitry D Sokoloff
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997820, Israel
| |
Collapse
|
11
|
Dhabalia Ashok A, de Vries S, Darienko T, Irisarri I, de Vries J. Evolutionary assembly of the plant terrestrialization toolkit from protein domains. Proc Biol Sci 2024; 291:20240985. [PMID: 39081174 PMCID: PMC11289646 DOI: 10.1098/rspb.2024.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.
Collapse
Affiliation(s)
- Amra Dhabalia Ashok
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, Hamburg20146, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
12
|
Glass SE, McCourt RM, Gottschalk SD, Lewis LA, Karol KG. Chloroplast genome evolution and phylogeny of the early-diverging charophycean green algae with a focus on the Klebsormidiophyceae and Streptofilum. JOURNAL OF PHYCOLOGY 2023; 59:1133-1146. [PMID: 37548118 DOI: 10.1111/jpy.13359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
The Klebsormidiophyceae are a class of green microalgae observed globally in both freshwater and terrestrial habitats. Morphology-based classification schemes of this class have been shown to be inadequate due to the simple morphology of these algae, the tendency of morphology to vary in culture versus field conditions, and rampant morphological homoplasy. Molecular studies revealing cryptic diversity have renewed interest in this group. We sequenced the complete chloroplast genomes of a broad series of taxa spanning the known taxonomic breadth of this class. We also sequenced the chloroplast genomes of three strains of Streptofilum, a recently discovered green algal lineage with close affinity to the Klebsormidiophyceae. Our results affirm the previously hypothesized polyphyly of the genus Klebsormidium as well as the polyphyly of the nominal species in this genus, K. flaccidum. Furthermore, plastome sequences strongly support the status of Streptofilum as a distinct, early-diverging lineage of charophytic algae sister to a clade comprising Klebsormidiophyceae plus Phragmoplastophyta. We also uncovered major structural alterations in the chloroplast genomes of species in Klebsormidium that have broad implications regarding the underlying mechanisms of chloroplast genome evolution.
Collapse
Affiliation(s)
- Sarah E Glass
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, New York, New York, USA
| | - Richard M McCourt
- Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania, USA
| | - Stephen D Gottschalk
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Kenneth G Karol
- Lewis B. and Dorothy Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, USA
| |
Collapse
|
13
|
Rieseberg TP, Dadras A, Bergschmidt LIN, Bierenbroodspot MJ, Fürst-Jansen JMR, Irisarri I, de Vries S, Darienko T, de Vries J. Divergent responses in desiccation experiments in two ecophysiologically different Zygnematophyceae. PHYSIOLOGIA PLANTARUM 2023; 175:e14056. [PMID: 38148198 DOI: 10.1111/ppl.14056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 12/28/2023]
Abstract
Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land. Here, we worked with two representatives of the Zygnematophyceae, Zygnema circumcarinatum SAG 698-1b and Mesotaenium endlicherianum SAG 12.97, who differ in habitats and drought resilience. We challenged both algal species with severe desiccation in a laboratory setup until photosynthesis ceased, followed by a recovery period. We assessed their morphological, photophysiological, and transcriptomic responses. Our data pinpoint global differential gene expression patterns that speak of conserved responses, from calcium-mediated signaling to the adjustment of plastid biology, cell envelopes, and amino acid pathways, between Zygnematophyceae and land plants despite their strong ecophysiological divergence. The main difference between the two species appears to rest in a readjustment of the photobiology of Zygnema, while Mesotaenium experiences stress beyond a tipping point.
Collapse
Affiliation(s)
- Tim P Rieseberg
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Armin Dadras
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Luisa I N Bergschmidt
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| |
Collapse
|
14
|
Bechteler J, Peñaloza-Bojacá G, Bell D, Gordon Burleigh J, McDaniel SF, Christine Davis E, Sessa EB, Bippus A, Christine Cargill D, Chantanoarrapint S, Draper I, Endara L, Forrest LL, Garilleti R, Graham SW, Huttunen S, Lazo JJ, Lara F, Larraín J, Lewis LR, Long DG, Quandt D, Renzaglia K, Schäfer-Verwimp A, Lee GE, Sierra AM, von Konrat M, Zartman CE, Pereira MR, Goffinet B, Villarreal A JC. Comprehensive phylogenomic time tree of bryophytes reveals deep relationships and uncovers gene incongruences in the last 500 million years of diversification. AMERICAN JOURNAL OF BOTANY 2023; 110:e16249. [PMID: 37792319 DOI: 10.1002/ajb2.16249] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
PREMISE Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. METHODS Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. RESULTS The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. CONCLUSIONS We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.
Collapse
Affiliation(s)
- Julia Bechteler
- Nees-Institute for Plant Biodiversity, University of Bonn, Meckenheimer Allee 170, 53115, Bonn, Germany
- Plant Biodiversity and Ecology, iES Landau, Institute for Environmental Sciences, RPTU University of Kaiserslautern-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Gabriel Peñaloza-Bojacá
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - David Bell
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - J Gordon Burleigh
- Department of Biological Sciences, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - Stuart F McDaniel
- Department of Biological Sciences, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - E Christine Davis
- Department of Biological Sciences, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - Emily B Sessa
- Department of Biological Sciences, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - Alexander Bippus
- California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| | - D Christine Cargill
- Australian National Herbarium, Centre for Australian National Biodiversity Research, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Sahut Chantanoarrapint
- PSU Herbarium, Division of Biological Science, Faculty of Science Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Isabel Draper
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain/Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lorena Endara
- Department of Biological Sciences, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - Laura L Forrest
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Ricardo Garilleti
- Departamento de Botánica y Geología. Universidad de Valencia, Avda. Vicente Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sanna Huttunen
- Herbarium (TUR), Biodiversity Unit, 20014 University of Turku, Finland
| | - Javier Jauregui Lazo
- Department of Plant Biology and Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Francisco Lara
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain/Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Larraín
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Avenida Viel 1497, Santiago, Chile
| | - Lily R Lewis
- Department of Biological Sciences, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - David G Long
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Dietmar Quandt
- Nees-Institute for Plant Biodiversity, University of Bonn, Meckenheimer Allee 170, 53115, Bonn, Germany
| | - Karen Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | | | - Gaik Ee Lee
- Faculty of Science and Marine Environment/Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21020 Kuala Nerus, Terengganu, Malaysia
| | - Adriel M Sierra
- Département de Biologie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Matt von Konrat
- Gantz Family Collections Center, Field Museum, 1400 S. DuSable Lake Shore Drive, Chicago, IL, 60605, USA
| | - Charles E Zartman
- Instituto Nacional de Pesquisas da Amazônia, Departamento de Biodiversidade, Avenida André Araújo, 2936, Aleixo, CEP 69060-001, Manaus, AM, Brazil
| | - Marta Regina Pereira
- Universidade do Estado do Amazonas, Av. Djalma Batista, 2470, Chapada, Manaus, 69050-010, Amazonas, Brazil
| | - Bernard Goffinet
- Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA
| | | |
Collapse
|
15
|
Flores-Téllez D, Tankmar MD, von Bülow S, Chen J, Lindorff-Larsen K, Brodersen P, Arribas-Hernández L. Insights into the conservation and diversification of the molecular functions of YTHDF proteins. PLoS Genet 2023; 19:e1010980. [PMID: 37816028 PMCID: PMC10617740 DOI: 10.1371/journal.pgen.1010980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/31/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
YT521-B homology (YTH) domain proteins act as readers of N6-methyladenosine (m6A) in mRNA. Members of the YTHDF clade determine properties of m6A-containing mRNAs in the cytoplasm. Vertebrates encode three YTHDF proteins whose possible functional specialization is debated. In land plants, the YTHDF clade has expanded from one member in basal lineages to eleven so-called EVOLUTIONARILY CONSERVED C-TERMINAL REGION1-11 (ECT1-11) proteins in Arabidopsis thaliana, named after the conserved YTH domain placed behind a long N-terminal intrinsically disordered region (IDR). ECT2, ECT3 and ECT4 show genetic redundancy in stimulation of primed stem cell division, but the origin and implications of YTHDF expansion in higher plants are unknown, as it is unclear whether it involves acquisition of fundamentally different molecular properties, in particular of their divergent IDRs. Here, we use functional complementation of ect2/ect3/ect4 mutants to test whether different YTHDF proteins can perform the same function when similarly expressed in leaf primordia. We show that stimulation of primordial cell division relies on an ancestral molecular function of the m6A-YTHDF axis in land plants that is present in bryophytes and is conserved over YTHDF diversification, as it appears in all major clades of YTHDF proteins in flowering plants. Importantly, although our results indicate that the YTH domains of all arabidopsis ECT proteins have m6A-binding capacity, lineage-specific neo-functionalization of ECT1, ECT9 and ECT11 happened after late duplication events, and involves altered properties of both the YTH domains, and, especially, of the IDRs. We also identify two biophysical properties recurrent in IDRs of YTHDF proteins able to complement ect2 ect3 ect4 mutants, a clear phase separation propensity and a charge distribution that creates electric dipoles. Human and fly YTHDFs do not have IDRs with this combination of properties and cannot replace ECT2/3/4 function in arabidopsis, perhaps suggesting different molecular activities of YTHDF proteins between major taxa.
Collapse
Affiliation(s)
- Daniel Flores-Téllez
- University of Copenhagen, Biology Department. Copenhagen, Denmark
- Universidad Francisco de Vitoria, Facultad de Ciencias Experimentales. Pozuelo de Alarcón (Madrid), Spain
| | | | - Sören von Bülow
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | - Junyu Chen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | | - Peter Brodersen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | |
Collapse
|