1
|
Zhu S, Zuo S, Li C, You X, Jiang E, Feng X, Luo Y. LLT1 overexpression renders allogeneic-NK resistance and facilitates the generation of enhanced universal CAR-T cells. J Exp Clin Cancer Res 2025; 44:25. [PMID: 39856752 PMCID: PMC11763111 DOI: 10.1186/s13046-025-03273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved. This study tested whether the overexpression of Lectin-like transcript 1 (LLT1), an NK cell inhibitory ligand, in T cell receptor (TCR) and HLA-I/II disrupted universal CD38-targeting CAR-T cells could prevent rejection by allogeneic NK cells. METHODS We generated CD38-targeting universal CAR-T cells by transducing T cells with lentiviruses encoding the CD38 CAR and LLT1 constructs. T cells were subjected to CD38, TCR, HLA-I, and HLA-II gene knockdown using CRISPR/Cas9, followed by lentiviral transduction. We performed cytotoxicity, proliferation, and cytokine assays to evaluate the functionality of universal chimeric antigen receptor-T cell (UCAR-T) cells and conducted in vitro and in vivo assays, including allogeneic responses and RNA sequencing, to assess their resistance to allogeneic T and NK cells, anti-leukemia efficacy, and persistence in treating hematologic malignancies. RESULTS Genetic editing of CD38 universal CAR-T cells, including CD38, T cell receptor alpha constant (TRAC), beta-2-microglobulin (B2M), and class II major histocompatibility complex transactivator (CIITA) knockdowns, was successfully achieved. In vitro, LLT1 overexpression boosted CAR-T cell proliferation and antitumor activity, leading to a transcriptional signature characterized by elevated stemness-related markers (SELL, BCL6, TCF7, and CD27) and increased levels of IL-10 and other cytokines. It also effectively mitigates rejection by allogeneic NK and T cells. In a humanized T-cell acute lymphoblastic leukemia (T-ALL) model, CD38 allogeneic universal CAR-T cells demonstrated superior survival rates and tumor clearance with reduced inflammatory responses. CONCLUSION According to these results, LLT1 overexpression enhances UCAR-T cell activity and prevents allogeneic rejection, providing essential insights for the development of universal CAR-T cell therapy.
Collapse
Affiliation(s)
- Shuxian Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xingjie You
- Geriatric Medical Center, Division of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- T-Cell Precision Therapy Lab, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, 311121, China.
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
Bocuzzi V, Bridoux J, Pirotte M, Withofs N, Hustinx R, D'Huyvetter M, Caers J, Marcion G. CD38 as theranostic target in oncology. J Transl Med 2024; 22:998. [PMID: 39501292 PMCID: PMC11539646 DOI: 10.1186/s12967-024-05768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
CD38 is a multifunctional transmembrane glycoprotein found in multiple tissues and overexpressed in many cancer cells, notably in hematological malignancies such as leukemia and multiple myeloma (MM). Therefore, targeting CD38 remains an attractive strategy for cancer treatment in hematological malignancies as well as in solid tumors. It plays a critical role in the progression of these diseases through its ADP-ribosyl cyclase and cADPR-hydrolase activities. Its importance has led to the development of various anti-CD38 monoclonal antibodies (mAbs), including daratumumab and isatuximab, approved for MM treatment. These mAbs exert their anti-tumor effects through Fc-dependent immune mechanisms and immunomodulation, enhancing T-cell and NK-cell-mediated responses. However, resistance mechanisms arise during the treatment with daratumumab, creating the necessity for new therapies. This review explains current knowledge about the role of CD38 as a target in oncology and aims to delineate the use of single domain antibodies (sdAbs) as innovative theranostic tools in nuclear medicine. For diagnostic purposes, PET radionuclides like 68 Ga, 64Cu, and SPECT radionuclides like 99mTc and 111In, are commonly used. Significant progress has been made in anti-CD38 radioligand therapy (RLT), with anti-CD38 antibodies providing insights into tumor biology and treatment efficacy. In terms of therapy, RLT is a promising approach that offers precise targeting of malignant cells while minimizing exposure to healthy tissue. This involves the use of radionuclides emitting α particles, like 225Ac, 212Pb or 211At, and β--particles like 90Y, 131I, or 177Lu, to exert cytotoxic effects. Derived from Camelidae heavy chain antibodies, sdAbs offer advantages over conventional mAbs such as small size, high stability, specificity, and ability to recognize hidden epitopes. CD38-specific sdAbs, such as sdAb 2F8, characterized by our laboratory, showing excellent tumor targeting and their engineered constructs, such as biparatopic antibodies and chimeric antibodies, represent a new generation of theranostic agents for diagnosis and treatment CD38-expressing malignancies.
Collapse
Affiliation(s)
- Valentina Bocuzzi
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Jessica Bridoux
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Nadia Withofs
- Department of Nuclear Medicine and Oncology, CHU de Liège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Matthias D'Huyvetter
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jo Caers
- Department of Hematology, CHU de Liège, Liège, Belgium.
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Isabelle C, Johnson WT, McConnell K, Vogel A, Brammer JE, Boles A, Keller R, Sindaco P, Nisenfeld L, Uppal G, Nikbakht N, Calabretta B, Porazzi P, Gong J, Chakravarti N, Porcu P, Mishra A. Preclinical evaluation of anti-CD38 therapy in mature T-cell neoplasms. Blood Adv 2023; 7:3637-3641. [PMID: 36989058 PMCID: PMC10365939 DOI: 10.1182/bloodadvances.2023009807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Affiliation(s)
- Colleen Isabelle
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
| | - William T. Johnson
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kathleen McConnell
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
| | - Ashley Vogel
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Jonathan E. Brammer
- Division of Hematology, Department of Internal Medicine, The James Comprehensive Center, The Ohio State University, Columbus, OH
| | - Amy Boles
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
| | - Robyn Keller
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
| | - Paola Sindaco
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
| | - Liam Nisenfeld
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Guldeep Uppal
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Patrizia Porazzi
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Cellular Immunotherapies, Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jerald Gong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Nitin Chakravarti
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
| | - Pierluigi Porcu
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
| | - Anjali Mishra
- Sidney Kimmel Cancer Center, Division of Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
4
|
Braun T, Schrader A. Education and Empowering Special Forces to Eradicate Secret Defectors: Immune System-Based Treatment Approaches for Mature T- and NK-Cell Malignancies. Cancers (Basel) 2023; 15:cancers15092532. [PMID: 37173999 PMCID: PMC10177197 DOI: 10.3390/cancers15092532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mature T- and NK-cell leukemia/lymphoma (MTCL/L) constitute a heterogeneous group of, currently, 30 distinct neoplastic entities that are overall rare, and all present with a challenging molecular markup. Thus, so far, the use of first-line cancer treatment modalities, including chemotherapies, achieve only limited clinical responses associated with discouraging prognoses. Recently, cancer immunotherapy has evolved rapidly, allowing us to help patients with, e.g., solid tumors and also relapsed/refractory B-cell malignancies to achieve durable clinical responses. In this review, we systematically unveiled the distinct immunotherapeutic approaches available, emphasizing the special impediments faced when trying to employ immune system defense mechanisms to target 'one of their own-gone mad'. We summarized the preclinical and clinical efforts made to employ the various platforms of cancer immunotherapies including antibody-drug conjugates, monoclonal as well as bispecific antibodies, immune-checkpoint blockades, and CAR T cell therapies. We emphasized the challenges to, but also the goals of, what needs to be done to achieve similar successes as seen for B-cell entities.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
- Lymphoma Immuno Biology Team, Equipe Labellisée LIGUE 2023, Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, Faculté de Médecine Lyon-Sud, Hospices Civils de Lyon, Université Claude Bernard Lyon I-ENS de Lyon, 69921 Lyon, France
| |
Collapse
|
5
|
Chu Y, Gardenswartz A, Diorio C, Marks LJ, Lowe E, Teachey DT, Cairo MS. Cellular and humoral immunotherapy in children, adolescents and young adults with non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101442. [PMID: 36907635 DOI: 10.1016/j.beha.2023.101442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The prognosis is dismal (2-year overall survival less than 25%) for childhood, adolescent, and young adult (CAYA) with relapsed and/or refractory (R/R) non-Hodgkin lymphoma (NHL). Novel targeted therapies are desperately needed for this poor-risk population. CD19, CD20, CD22, CD79a, CD38, CD30, LMP1 and LMP2 are attractive targets for immunotherapy in CAYA patients with R/R NHL. Novel anti-CD20 monoclonal antibodies, anti-CD38 monoclonal antibody, antibody drug conjugates and T and natural killer (NK)-cell bispecific and trispecific engagers are being investigated in the R/R setting and are changing the landscape of NHL therapy. A variety of cellular immunotherapies such as viral activated cytotoxic T-lymphocyte, chimeric antigen receptor (CAR) T-cells, NK and CAR NK-cells have been investigated and provide alternative options for CAYA patients with R/R NHL. Here, we provide an update and clinical practice guidance of utilizing these cellular and humoral immunotherapies in CAYA patients with R/R NHL.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Caroline Diorio
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lianna J Marks
- Division of Pediatric Hematology and Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric Lowe
- Division of Pediatric Hematology-Oncology, Children's Hospital of the Kings Daughter, Norfolk, VA, USA
| | - David T Teachey
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA; Department of Epidemiology and Community Health, New York Medical College, Valhalla, NY, USA; Department of Medicine, New York Medical College, Valhalla, NY, USA; Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Cell Biology, New York Medical College, Valhalla, NY, USA; Department of Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
6
|
Carlo‐Stella C, Zinzani PL, Sureda A, Araújo L, Casasnovas O, Carpio C, Yeh S, Bouabdallah K, Cartron G, Kim WS, Cordoba R, Koh Y, Re A, Alves D, Chamuleau M, Le Gouill S, López‐Guillermo A, Moreira I, van der Poel MWM, Abbadessa G, Meng R, Ji R, Lépine L, Saleem R, Ribrag V. A phase 1/2, open-label, multicenter study of isatuximab in combination with cemiplimab in patients with lymphoma. Hematol Oncol 2023; 41:108-119. [PMID: 36251503 PMCID: PMC10092787 DOI: 10.1002/hon.3089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
Patients with relapsed or refractory lymphoma have limited treatment options, requiring newer regimens. In this Phase 1/2 study (NCT03769181), we assessed the safety, efficacy, and pharmacokinetics of isatuximab (Isa, anti-CD38 antibody) in combination with cemiplimab (Cemi, anti-programmed death-1 [PD-1] receptor antibody; Isa + Cemi) in patients with classic Hodgkin lymphoma (cHL), diffuse large B-cell lymphoma (DLBCL), and peripheral T-cell lymphoma (PTCL). In Phase 1, we characterized the safety and tolerability of Isa + Cemi with planned dose de-escalation to determine the recommended Phase 2 dose (RP2D). Six patients in each cohort were treated with a starting dose of Isa + Cemi to determine the RP2D. In Phase 2, the primary endpoints were complete response in Cohort A1 (cHL anti-PD-1/programmed death-ligand 1 [PD-L1] naïve), and objective response rate in Cohorts A2 (cHL anti-PD-1/PD-L1 progressors), B (DLBCL), and C (PTCL). An interim analysis was performed when the first 18 (Cohort A1), 12 (Cohort A2), 17 (Cohort B), and 11 (Cohort C) patients in Phase 2 had been treated and followed up for 24 weeks. Isa + Cemi demonstrated a manageable safety profile with no new safety signals. No dose-limiting toxicities were observed at the starting dose; thus, the starting dose of each drug was confirmed as the RP2D. Based on the Lugano 2014 criteria, 55.6% (Cohort A1), 33.3% (Cohort A2), 5.9% (Cohort B), and 9.1% (Cohort C) of patients achieved a complete or partial response. Pharmacokinetic analyses suggested no effect of Cemi on Isa exposure. Modest clinical efficacy was observed in patients with cHL regardless of prior anti-PD-1/PD-L1 exposure. In DLBCL or PTCL cohorts, interim efficacy analysis results did not meet prespecified criteria to continue enrollment in Phase 2 Stage 2. Isa + Cemi did not have a synergistic effect in these patient populations.
Collapse
Affiliation(s)
- Carmelo Carlo‐Stella
- Department of Biomedical SciencesHumanitas University and Department of Oncology and HematologyIRCCS Humanitas Research HospitalMilanoItaly
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero‐Universitaria di Bologna Istituto di Ematologia “Seràgnoli” and Dipartimento di Medicina SpecialisticaDiagnostica e Sperimentale Università di BolognaBolognaItaly
| | - Anna Sureda
- Institut Català D'Oncologia ‐ Hospital Duran i ReynalsIDIBELLUniversitat de BarcelonaBarcelonaSpain
| | | | | | - Cecilia Carpio
- Department of HematologyVall d'Hebron Institute of Oncology (VHIO)Hospital Universitari Vall d’HebronVall d’Hebron Barcelona Hospital CampusUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Su‐Peng Yeh
- China Medical University HospitalTaichungTaiwan
| | - Krimo Bouabdallah
- Hematology and Cellular Therapy DepartmentUniversity Hospital of BordeauxBordeauxFrance
| | - Guillaume Cartron
- Department of HematologyCentre Hospitalier Universitaire MontpellierMontpellierFrance
| | - Won Seog Kim
- Sungkyunkwan University School of MedicineSamsung Medical CenterSeoulKorea
| | - Raul Cordoba
- Fundación Jiménez Díaz University HospitalMadridSpain
| | - Youngil Koh
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
| | - Alessandro Re
- Hematology DivisionASST Spedali Civili BresciaBresciaItaly
| | - Daniela Alves
- Hematology and Bone Marrow Transplant DepartmentHospital de Santa MariaCentro Hospitalar Universitário Lisboa Norte (CHULN)LisbonPortugal
| | - Martine Chamuleau
- Department of HematologyCancer Center Amsterdamon behalf of the LLPC (Lunenburg Lymphoma Phase I/II Consortium)Amsterdam University Medical CenterVU University AmsterdamAmsterdamThe Netherlands
| | | | | | - Ilídia Moreira
- Department of Onco‐HematologyPortuguese Institute of Oncology of PortoPortoPortugal
| | - Marjolein W. M. van der Poel
- Department of Internal MedicineDivision of HematologyGROW School for Oncology and Developmental Biologyon behalf of the LLPC (Lunenburg Lymphoma Phase I/II Consortium)Maastricht University Medical CenterMaastrichtthe Netherlands
| | | | | | - Ran Ji
- SanofiCambridgeMassachusettsUSA
| | | | | | - Vincent Ribrag
- Département d’Hématologie et Département des Essais Précoces (DITEP)Institut Gustave RoussyVillejuifFrance
| |
Collapse
|
7
|
Jegatheeson S, Cannon C, Mansfield C, Devlin J, Roberts A. Sensitivity of canine hematological cancers to BH3 mimetics. J Vet Intern Med 2022; 37:236-246. [PMID: 36433867 PMCID: PMC9889650 DOI: 10.1111/jvim.16587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Inhibition of antiapoptotic B-cell lymphoma 2 (BCL2) proteins by small molecule Bcl-2 homology 3 (BH3) mimetics causes rapid induction of apoptosis of human hematological cancers in vitro and in vivo. OBJECTIVES Assess in vitro sensitivity of non-neoplastic lymphocytes and primary hematological cancer cells from dogs to venetoclax (VEN) or the dual BCL2/ B-cell lymphoma-extra-large (BCLxL) inhibitor, navitoclax (NAV), and evaluate the association between BCL2 protein expression and VEN sensitivity. ANIMALS Nine client-owned dogs without cancer and 18 client-owned dogs with hematological cancer. METHODS Prospective, nonrandomized noncontrolled study. Lymphocytes isolated from peripheral blood, lymph node, or bone marrow from dogs were incubated with BH3 mimetics for 24 hours. Viable cells were counted using flow cytometry and half maximal effective concentration (EC50 ) was calculated. BCL2 protein from whole cell lysates was assessed via immunoblots. RESULTS Nodal B and T lymphocytes were more sensitive to VEN than circulating lymphocytes (P = .02). Neoplastic T lymphocytes were sensitive to VEN (mean EC50 ± SD = 0.023 ± 0.018 μM), whereas most non-indolent B cell cancers were resistant to killing by VEN (mean EC50 ± SD = 288 ± 700 μM). Unclassified leukemias showed variable sensitivity to VEN (mean EC50 ± SD = 0.49 ± 0.66 μM). Detection of BCL2 protein was not associated with VEN sensitivity. CONCLUSION AND CLINICAL IMPORTANCE Neoplastic canine T lymphocytes are sensitive to VEN in vitro. Quantification of BCL2 protein alone is insufficient to predict sensitivity to VEN.
Collapse
Affiliation(s)
- Selvi Jegatheeson
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia,Blood Cells and Blood Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Claire Cannon
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia,Present address:
Veterinary Referral HospitalDandenongVictoriaAustralia
| | - Caroline Mansfield
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - Joanne Devlin
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - Andrew Roberts
- Blood Cells and Blood Cancer DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| |
Collapse
|
8
|
Abstract
Acute leukemia (AL) is a hematological malignancy, and the prognosis of most AL patients hasn’t improved significantly, particularly for relapsed or refractory (R/R) AL. Therefore, new treatments for R/R adult acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) are urgently necessary. Novel developments have been made in AL treatment, including target and immune therapies. CD38 is one of the targets due to its high expression in many hematological malignancies, including multiple myeloma, ALL and a subset of AML. Consequently, targeting CD38 therapies, including CD38 monoclonal antibodies (mAbs), bispecific antibodies, and CAR-T cell therapy, exhibit promising efficacy in treating multiple myeloma without significant toxicity and are being explored in other hematological malignancies and nonhematological diseases. Herein, this review focuses on targeting CD38 therapies in ALL and AML, which demonstrate sound antileukemic effects in acute leukemia and are expected to become effective treatment methods.
Collapse
|
9
|
Molecular Determinants Underlying the Anti-Cancer Efficacy of CD38 Monoclonal Antibodies in Hematological Malignancies. Biomolecules 2022; 12:biom12091261. [PMID: 36139103 PMCID: PMC9496523 DOI: 10.3390/biom12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
CD38 was first discovered as a T-cell antigen and has since been found ubiquitously expressed in various hematopoietic cells, including plasma cells, NK cells, B cells, and granulocytes. More importantly, CD38 expression levels on malignant hematopoietic cells are significantly higher than counterpart healthy cells, thus presenting itself as a promising therapeutic target. In fact, for many aggressive hematological cancers, including CLL, DLBCL, T-ALL, and NKTL, CD38 expression is significantly associated with poorer prognosis and a hyperproliferative or metastatic phenotype. Studies have shown that, beyond being a biomarker, CD38 functionally mediates dysregulated survival, adhesion, and migration signaling pathways, as well as promotes an immunosuppressive microenvironment conducive for tumors to thrive. Thus, targeting CD38 is a rational approach to overcoming these malignancies. However, clinical trials have surprisingly shown that daratumumab monotherapy has not been very effective in these other blood malignancies. Furthermore, extensive use of daratumumab in MM is giving rise to a subset of patients now refractory to daratumumab treatment. Thus, it is important to consider factors modulating the determinants of response to CD38 targeting across different blood malignancies, encompassing both the transcriptional and post-transcriptional levels so that we can diversify the strategy to enhance daratumumab therapeutic efficacy, which can ultimately improve patient outcomes.
Collapse
|
10
|
Domoto H, Araki T, Ogai A, Inukai M, Chen CK, Tomita S, Mukai K, Nakamura N. Surface CD3-negative monomorphic epitheliotropic intestinal T-cell lymphoma. J Clin Exp Hematop 2022; 62:169-174. [PMID: 35979577 DOI: 10.3960/jslrt.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Intestinal T/NK-cell lymphomas include enteropathy-associated T-cell lymphoma (EATL), monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), indolent T-cell lymphoproliferative disorders of the GI tract (ITCLPD), extranodal NK/T-cell lymphoma, nasal type (ENKTL), and intestinal T-cell lymphoma NOS (ITCL-NOS). Here we describe a case of surface CD3-negative MEITL. A 63-year-old Japanese female had a tumor located in the conglomerated ileum, which formed multiple mass lesions. The resected tissue showed a diffuse infiltration of monomorphic medium-sized lymphocytes with epitheliotropism. Flowcytometry using a fresh specimen of the tumor revealed positivity for CD7, CD8, CD38, and CD56, but not surface CD3. On immunohistochemistry, the tumor showed positivity for cytoplasmic CD3, CD8, CD56, TIA-1, Granzyme B, and perforin. EBER with in situ hybridization was negative. Moreover, H3K36me3, which is negative in MEITL with SETD2-mutation, was positive. This is an important case of MEITL due to its oncogenesis.
Collapse
Affiliation(s)
- Hideharu Domoto
- Department of Diagnostic Pathology, Keiyu Hospital, Yokohama, Kanagawa, Japan
| | - Takahiro Araki
- Department of Hematology, Keiyu Hospital, Yokohama, Kanagawa, Japan
| | - Asuka Ogai
- Department of Hematology, Keiyu Hospital, Yokohama, Kanagawa, Japan
| | - Michiko Inukai
- Department of Surgery, Keiyu Hospital, Yokohama, Kanagawa, Japan
| | - Chien K Chen
- Department of Hematology, Keiyu Hospital, Yokohama, Kanagawa, Japan
| | - Sakura Tomita
- Department of Pathological Diagnostics, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kiyoshi Mukai
- Department of Diagnostic Pathology, Keiyu Hospital, Yokohama, Kanagawa, Japan
| | - Naoya Nakamura
- Department of Pathological Diagnostics, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
11
|
Hathuc V, Kreisel F. Genetic Landscape of Peripheral T-Cell Lymphoma. Life (Basel) 2022; 12:life12030410. [PMID: 35330161 PMCID: PMC8954173 DOI: 10.3390/life12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T-Cell lymphoma (PTCL) comprises a heterogenous group of uncommon lymphomas derived from mature, post-thymic or “peripheral” T- and natural killer cells. The World Health Organization (WHO) emphasizes a multiparameter approach in the diagnosis and subclassification of these neoplasms, integrating clinical, morphologic, immunophenotypic, and genetic features into the final diagnosis. Clinical presentation is particularly important due to histologic, immunophenotypic and genetic variations within established subtypes, and no convenient immunophenotypic marker of monoclonality exists. In recent years, widespread use of gene expression profiling and next-generation sequencing (NGS) techniques have contributed to an improved understanding of the pathobiology in PTCLs, and these have been incorporated into the 2016 revised WHO classification of mature T- and NK-cell neoplasms which now encompasses nearly 30 distinct entities. This review discusses the genetic landscape of PTCL and its role in subclassification, prognosis, and potential targeted therapy. In addition to discussing T-Cell lymphoma subtypes with relatively well-defined or relevant genetic aberrancies, special attention is given to genetic advances in T-Cell lymphomas of T follicular helper cell (TFH) origin, highlighting genetic overlaps between angioimmunoblastic T-Cell lymphoma (AITL), follicular T-Cell lymphoma, and nodal peripheral T-Cell lymphoma with a TFH phenotype. Furthermore, genetic drivers will be discussed for ALK-negative anaplastic large cell lymphomas and their role in differentiating these from CD30+ peripheral T-Cell lymphoma, not otherwise specified (NOS) and primary cutaneous anaplastic large cell lymphoma. Lastly, a closer look is given to genetic pathways in peripheral T-Cell lymphoma, NOS, which may guide in teasing out more specific entities in a group of T-Cell lymphomas that represents the most common subcategory and is sometimes referred to as a “wastebasket” category.
Collapse
|
12
|
Ballotta L, Zinzani PL, Pileri S, Bruna R, Tani M, Casadei B, Tabanelli V, Volpetti S, Luminari S, Corradini P, Lucchini E, Tisi MC, Merli M, Re A, Varettoni M, Pesce EA, Zaja F. Venetoclax Shows Low Therapeutic Activity in BCL2-Positive Relapsed/Refractory Peripheral T-Cell Lymphoma: A Phase 2 Study of the Fondazione Italiana Linfomi. Front Oncol 2021; 11:789891. [PMID: 34938664 PMCID: PMC8685372 DOI: 10.3389/fonc.2021.789891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Patients with relapsed/refractory (R/R) peripheral T-cell lymphoma (PTCL) have a poor prognosis, with an expected survival of less than 1 year using standard salvage therapies. Recent advances in our understanding of the biology of PTCL have led to identifying B-Cell Lymphoma 2 (BCL2) protein as a potential therapeutic target. BLC2 inhibitor venetoclax was investigated in a prospective phase II trial in patients with BCL2-positive R/R PTCL after at least one previous standard line of treatment (NCT03552692). Venetoclax given alone at a dosage of 800 mg/day resulted in one complete response (CR) and two stable diseases (SDs) among 17 enrolled patients. The majority of patients (88.2%) interrupted the treatment due to disease progression. No relationship with BCL2 expression was documented. At a median follow-up of 8 months, two patients are currently still on treatment (one CR and one SD). No case of tumor lysis syndrome was registered. Therefore, venetoclax monotherapy shows activity in a minority of patients whose biological characteristics have not yet been identified. Clinical Trial Registration www.clinicaltrials.gov (NCT03552692, EudraCT number 2017-004630-29).
Collapse
Affiliation(s)
- Laura Ballotta
- Dipartimento Clinico di Scienze Mediche, Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy.,Struttura Complessa (SC) Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Pier Luigi Zinzani
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seragnoli", Bologna, Italy.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, Bologna, Italy
| | - Stefano Pileri
- Divisione di Emolinfopatologia, Istituto Europeo di Oncologia Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Milano, Italy
| | - Riccardo Bruna
- Divisione di Ematologia, Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale e Azienda Ospedaliera Universitaria (AOU) Maggiore della Carità, Novara, Italy
| | - Monica Tani
- Unità Operativa Complessa (UOC) Ematologia, Ospedale Santa Maria delle Croci, Ravenna, Italy
| | - Beatrice Casadei
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seragnoli", Bologna, Italy.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, Bologna, Italy
| | - Valentina Tabanelli
- Divisione di Emolinfopatologia, Istituto Europeo di Oncologia Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Milano, Italy
| | - Stefano Volpetti
- Clinica Ematologica, Azienda Sanitaria Universitaria (AOU) Friuli Centrale, Udine, Italy
| | - Stefano Luminari
- Ematologia, Azienda Unita Sanitaria Locale Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS) Reggio Emilia, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.,Dipartimento Chirurgico Medico Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico Oncologico e di Medicina Rigenerativa (CHIMOMO), Università di Modena e Reggio Emilia, Modena, Italy
| | - Paolo Corradini
- Struttura Complessa (SC) Ematologia, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, Milano, Italy
| | - Elisa Lucchini
- Struttura Complessa (SC) Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | | | - Michele Merli
- Ematologia "Ospedale di Circolo e Fondazione Macchi-Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi", Varese, Italy
| | - Alessandro Re
- Ematologia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Marzia Varettoni
- Divisione di Ematologia, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS) Policlinico San Matteo, Pavia, Italy
| | | | - Francesco Zaja
- Dipartimento Clinico di Scienze Mediche, Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy.,Struttura Complessa (SC) Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| |
Collapse
|
13
|
Hybel TE, Vase MØ, Maksten EF, Enemark MB, Lauridsen KL, Hamilton-Dutoit S, Andersen C, Møller MB, Sørensen SS, Jespersen B, Kampmann J, d’Amore F, Ludvigsen M. Intratumoral expression of CD38 in patients with post-transplant lymphoproliferative disorder. Acta Oncol 2021; 60:1637-1642. [PMID: 34474636 DOI: 10.1080/0284186x.2021.1973093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maja Ølholm Vase
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marie Beck Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Claus Andersen
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Bente Jespersen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Kampmann
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Marques-Piubelli ML, Solis LM, Parra ER, Castillo LM, Gouni S, Nair R, Chihara D, Konopleva M, Wistuba II, Iyer SP, Vega F, Strati P. BCL-W expression associates with poor outcome in patients with peripheral T-cell lymphoma not otherwise specified. Blood Cancer J 2021; 11:153. [PMID: 34531377 PMCID: PMC8445996 DOI: 10.1038/s41408-021-00549-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Affiliation(s)
- Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Malpica Castillo
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sushanth Gouni
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dai Chihara
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan P Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paolo Strati
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Pileri SA, Tabanelli V, Fiori S, Calleri A, Melle F, Motta G, Lorenzini D, Tarella C, Derenzini E. Peripheral T-Cell Lymphoma, Not Otherwise Specified: Clinical Manifestations, Diagnosis, and Future Treatment. Cancers (Basel) 2021; 13:4535. [PMID: 34572763 PMCID: PMC8472517 DOI: 10.3390/cancers13184535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL_NOS) corresponds to about one fourth of mature T-cell tumors, which overall represent 10-12% of all lymphoid malignancies. This category comprises all T-cell neoplasms, which do not correspond to any of the distinct entities listed in the WHO (World Health Organization) Classification of Tumours of Haematopoietic and Lymphoid Tissues. In spite of the extreme variability of morphologic features and phenotypic profiles, gene expression profiling (GEP) studies have shown a signature that is distinct from that of all remaining PTCLs. GEP has also allowed the identification of subtypes provided with prognostic relevance. Conversely to GEP, next-generation sequencing (NGS) has so far been applied to a limited number of cases, providing some hints to better understand the pathobiology of PTCL_NOS. Although several pieces of information have emerged from pathological studies, PTCL_NOS still remains a tumor with a dismal prognosis. The usage of CHOEP (cyclophosphamide, doxorubicin, vincristine, prednisone, etoposide) followed by autologous stem cell transplantation may represent the best option, by curing about 50% of the patients whom such an approach can be applied to. Many new drugs have been proposed without achieving the expected results. Thus, the optimal treatment of PTCL_NOS remains unidentified.
Collapse
Affiliation(s)
- Stefano A. Pileri
- Division of Haematopathology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (V.T.); (S.F.); (A.C.); (F.M.); (G.M.); (D.L.)
| | - Valentina Tabanelli
- Division of Haematopathology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (V.T.); (S.F.); (A.C.); (F.M.); (G.M.); (D.L.)
| | - Stefano Fiori
- Division of Haematopathology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (V.T.); (S.F.); (A.C.); (F.M.); (G.M.); (D.L.)
| | - Angelica Calleri
- Division of Haematopathology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (V.T.); (S.F.); (A.C.); (F.M.); (G.M.); (D.L.)
| | - Federica Melle
- Division of Haematopathology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (V.T.); (S.F.); (A.C.); (F.M.); (G.M.); (D.L.)
| | - Giovanna Motta
- Division of Haematopathology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (V.T.); (S.F.); (A.C.); (F.M.); (G.M.); (D.L.)
| | - Daniele Lorenzini
- Division of Haematopathology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (V.T.); (S.F.); (A.C.); (F.M.); (G.M.); (D.L.)
| | - Corrado Tarella
- Division of Haemato-Oncology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (C.T.); (E.D.)
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20146 Milan, Italy
| | - Enrico Derenzini
- Division of Haemato-Oncology, Haematology Programme, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20121 Milan, Italy; (C.T.); (E.D.)
- Department of Health Sciences, University of Milan, Via di Rudinì 8, 20146 Milan, Italy
| |
Collapse
|
16
|
Manso R, Rodríguez-Perales S, Torres-Ruiz R, Santonja C, Rodríguez-Pinilla SM. PD-L1 expression in peripheral T-cell lymphomas is not related to either PD-L1 gene amplification or rearrangements. Leuk Lymphoma 2021; 62:1648-1656. [PMID: 33550887 DOI: 10.1080/10428194.2021.1881511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nodal peripheral T-cell lymphomas (n-PTCL) are aggressive lymphomas with no specific treatment. Programmed death 1 (PD-1) inhibits T-cell activation and proliferation, and the expression of its ligand PD-L1 has been associated with worse prognosis in some tumors. We performed immunohistochemistry for PD-1, p-STAT3, and PD-L1 (Clones SP142/263/22C3/28.8) and FISH studies for PD-L1/2 genes in chromosome 9p in a series of 168 formalin-fixed, paraffin-embedded n-PTCL samples. PD-L1 (clone 263) was the most frequently detected in both tumor cells (especially in the ALCL subgroup) and the microenvironment (especially in the AITL subgroup). In five ALCL cases, 3-4 copies of the two loci of chromosome 9 were found, suggestive of polyploidy. PD-L1 correlated with p-STAT3 on tumor cells. PD-1 expression in tumor cells was related to expression of PD-L1 in microenvironment. The expression of PD-L1 on tumor cells or microenvironment suggests that some n-PTCL cases might benefit from immune check-point modulation therapy.
Collapse
Affiliation(s)
- Rebeca Manso
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Santonja
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | |
Collapse
|
17
|
Iżykowska K, Rassek K, Korsak D, Przybylski GK. Novel targeted therapies of T cell lymphomas. J Hematol Oncol 2020; 13:176. [PMID: 33384022 PMCID: PMC7775630 DOI: 10.1186/s13045-020-01006-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
T cell lymphomas (TCL) comprise a heterogeneous group of non-Hodgkin lymphomas (NHL) that often present at an advanced stage at the time of diagnosis and that most commonly have an aggressive clinical course. Treatment in the front-line setting is most often cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens, which are effective in B cell lymphomas, but in TCL are associated with a high failure rate and frequent relapses. Furthermore, in contrast to B cell NHL, in which substantial clinical progress has been made with the introduction of monoclonal antibodies, no comparable advances have been seen in TCL. To change this situation and improve the prognosis in TCL, new gene-targeted therapies must be developed. This is now possible due to enormous progress that has been made in the last years in the understanding of the biology and molecular pathogenesis of TCL, which enables the implementation of the research findings in clinical practice. In this review, we present new therapies and current clinical and preclinical trials on targeted treatments for TCL using histone deacetylase inhibitors (HDACi), antibodies, chimeric antigen receptor T cells (CARTs), phosphatidylinositol 3-kinase inhibitors (PI3Ki), anaplastic lymphoma kinase inhibitors (ALKi), and antibiotics, used alone or in combinations. The recent clinical success of ALKi and conjugated anti-CD30 antibody (brentuximab-vedotin) suggests that novel therapies for TCL can significantly improve outcomes when properly targeted.
Collapse
Affiliation(s)
- Katarzyna Iżykowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Dorota Korsak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Grzegorz K Przybylski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland.
| |
Collapse
|
18
|
Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461. [PMID: 32313210 DOI: 10.1038/s41423-020-0417-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.
Collapse
|
19
|
Murga-Zamalloa CA, Brown NA, Wilcox RA. Expression of the checkpoint receptors LAG-3, TIM-3 and VISTA in peripheral T cell lymphomas. J Clin Pathol 2020; 73:197-203. [PMID: 31672704 PMCID: PMC7236306 DOI: 10.1136/jclinpath-2019-206117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
AIMS Peripheral T cell lymphomas represent approximately 10%-15% of non-Hodgkin lymphomas and are characterised by an aggressive clinical courses and poor outcomes. Ligands provided by constituents of the tumour microenvironment engage receptors expressed by malignant T cells, promoting tumour growth and chemotherapy resistance. In addition to stimulatory receptors that promote the growth and survival of malignant T cells, recent studies suggest that homologous inhibitory receptors may have an opposing effect and function as tumour suppressors. For example, recent data suggest that programmed cell death 1 blockade may lead to increased lymphoma growth. Therefore, the identification of alternative checkpoint receptors in T cell lymphoproliferative neoplasms is an important and clinically relevant question. METHODS The checkpoint receptors T cell immunoglobulin-3 (TIM-3), V-domain Ig-containing suppressor of T cell activation (VISTA) and lymphocyte-activation gene 3 (LAG-3) play fundamental roles in peripheral tolerance, and their ligands are exploited by many solid tumours to evade host immunity. However, their expression in T cell lymphoproliferative neoplasms has not been evaluated. In this study, we evaluated the expression of TIM-3, VISTA and LAG-3 in a cohort of peripheral T cell lymphomas cases by immunohistochemistry and flow cytometric analysis. RESULTS Our results demonstrate that TIM-3, VISTA and LAG-3 expression is rarely identified within a large cohort of T cell lymphomas and its tumour microenvironment. CONCLUSIONS Our data suggest that immune-regulatory roles for TIM-3, VISTA and LAG-3 may be predominant in lymphomas subsets different than the ones analysed in the current study. However, a potential role for these checkpoint receptors as tumour suppressors in T cell lymphomas remains to be elucidated.
Collapse
Affiliation(s)
| | - Noah A. Brown
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryan A. Wilcox
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Calabretta E, Carlo-Stella C. The Many Facets of CD38 in Lymphoma: From Tumor-Microenvironment Cell Interactions to Acquired Resistance to Immunotherapy. Cells 2020; 9:E802. [PMID: 32225002 PMCID: PMC7226059 DOI: 10.3390/cells9040802] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
The CD38 antigen is expressed in several hematological malignancies, and the anti-CD38 monoclonal antibodies Daratumumab and Isatuximab have an established role in the therapy of multiple myeloma. However, data on the therapeutic utility of CD38 targeting in other lymphoid malignancies are limited. In chronic lymphocytic leukemia, the prognostic significance of CD38 expression is well accepted, and preclinical studies on the use of Daratumumab in monotherapy or combination therapy have demonstrated considerable efficacy. In other lymphoproliferative disorders, preclinical and clinical data have not been as compelling; however, CD38 overexpression likely contributes to resistance to checkpoint inhibitors, prompting numerous clinical trials in Hodgkin and non-Hodgkin lymphoma to investigate whether blocking CD38 enhances the efficacy of checkpoint inhibitors. Furthermore, due to its widespread expression in hematological tumors, CD38 represents an attractive target for cellular therapies such as CAR-T cells. The present review discusses current knowledge of CD38 expression and its implications in various lymphoid malignancies. Furthermore, it addresses current and future therapeutic perspectives, with a particular emphasis on the significance of CD38 interaction with immune cells of the tumor microenvironment. Lastly, results of ongoing studies using anti-CD38 antibodies will be reviewed.
Collapse
Affiliation(s)
- Eleonora Calabretta
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, 20089 Milano, Italy;
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, 20089 Milano, Italy;
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milano, Italy
| |
Collapse
|
21
|
Kim S, Kwon D, Koh J, Nam SJ, Kim YA, Kim TM, Kim CW, Jeon YK. Clinicopathological features of programmed cell death-1 and programmed cell death-ligand-1 expression in the tumor cells and tumor microenvironment of angioimmunoblastic T cell lymphoma and peripheral T cell lymphoma not otherwise specified. Virchows Arch 2020; 477:131-142. [PMID: 32170448 DOI: 10.1007/s00428-020-02790-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
The expression patterns of programmed cell death-1 (PD-1) and programmed cell death-ligand-1 (PD-L1) and their clinicopathological implications were investigated in peripheral T cell lymphoma (PTCL) including angioimmunoblastic T cell lymphoma (AITL) and PTCL-not otherwise specified (PTCL-NOS). PTCL-NOS was further classified into nodal PTCL with follicular helper T cell (Tfh) phenotype ("PTCL-Tfh_new") and "PTCL-NOS_new". PD-1 and PD-L1 expression on tumor cells and reactive immune cells was evaluated using immunohistochemistry. PD-1 and PD-L1 expression on tumor cells (PD-1T and PD-L1T, respectively) was interpreted as positive when more than 5% of tumor cells expressed PD-1 or PD-L1. For PD-1 and PD-L1 on tumor cells and/or reactive immune cells (PD-1T + IC and PD-L1T + IC, respectively), a cutoff of 10% of cells was used. PD-1T, PD-L1T, and PD-L1T + IC expressions tended to be higher in AITLs than in PTCLs-NOS. PD-1T, PD-1T + IC, PD-L1T, and PD-L1T + IC expressions tended to be higher in PTCLs with Tfh phenotype including AITLs and "PTCL-Tfh_new" than in PTCLs without Tfh phenotype. The serum LDH level was significantly elevated in patients with PTCL positive for PD-L1T (P = 0.006) and PD-L1T + IC (P < 0.001). Patients with PTCL who were positive for combined expression of PD-1T/PD-L1T + IC presented at older ages (P = 0.010), nodal diseases (P = 0.001), higher IPI (P = 0.060), and elevated LDH (P = 0.030). Combined PD-1T/PD-L1T + IC positivity was related to shorter overall survival in patients with AITL (P = 0.051). Combined PD-1T/PD-L1T + IC positivity was a significant poor prognostic factor in patients with stage IV AITL, independent of B symptoms and performance status (HR = 6.282 [CI, 1.655-23.844], P = 0.007). In summary, the PD-1/PD-L1 pathway could be a potential prognostic and therapeutic biomarker for PTCL.
Collapse
Affiliation(s)
- Sehui Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dohee Kwon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chul Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Cancer Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
22
|
Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020; 5:15. [PMID: 32296035 PMCID: PMC7058622 DOI: 10.1038/s41392-020-0113-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei Qin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Yu-Jia Huo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Qing Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
23
|
Martin TG, Corzo K, Chiron M, van de Velde H, Abbadessa G, Campana F, Solanki M, Meng R, Lee H, Wiederschain D, Zhu C, Rak A, Anderson KC. Therapeutic Opportunities with Pharmacological Inhibition of CD38 with Isatuximab. Cells 2019; 8:E1522. [PMID: 31779273 PMCID: PMC6953105 DOI: 10.3390/cells8121522] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022] Open
Abstract
CD38 is a transmembrane glycoprotein with ectoenzymatic activity involved in regulation of migration, signal transduction, and receptor-mediated adhesion. CD38 is highly expressed on various malignant cells, including multiple myeloma (MM), and at relatively low levels in other tissues, making it a suitable target for therapeutic antibodies. Several anti-CD38 therapies have been, or are being, developed for the treatment of MM, including daratumumab and isatuximab (SAR650984), respectively. Studies have shown that anti-CD38 therapies are effective in the treatment of relapsed/refractory MM and are well tolerated, with infusion reactions being the most common side effects. They can be used as monotherapy or in combination with immunomodulatory agents, such as pomalidomide, or proteasome inhibitors to potentiate their activity. Here we examine isatuximab and several anti-CD38 agents in development that were generated using new antibody engineering techniques and that may lead to more effective CD38 targeting. We also summarize trials assessing these antibodies in MM, other malignancies, and solid organ transplantation. Finally, we propose that further research on the mechanisms of resistance to anti-CD38 therapy and the development of biomarkers and new backbone regimens with CD38 antibodies will be important steps in building more personalized treatment for patients with MM.
Collapse
Affiliation(s)
- Thomas G. Martin
- Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143-0324, USA;
| | - Kathryn Corzo
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Marielle Chiron
- Translational and Experimental Medicine, Sanofi Research & Development, 94403 Vitry-sur-Seine, France;
| | - Helgi van de Velde
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Giovanni Abbadessa
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Frank Campana
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Malini Solanki
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Robin Meng
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Helen Lee
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Dmitri Wiederschain
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Chen Zhu
- Sanofi Oncology, Cambridge, MA 02142, USA; (K.C.); (H.v.d.V.); (G.A.); (F.C.); (M.S.); (R.M.); (H.L.); (D.W.); (C.Z.)
| | - Alexey Rak
- Integrated Drug Discovery, Sanofi Research & Development, 94403 Vitry-sur-Seine, France;
| | | |
Collapse
|
24
|
Xie M, Huang X, Ye X, Qian W. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma. Int Immunopharmacol 2019; 77:105999. [PMID: 31704289 DOI: 10.1016/j.intimp.2019.105999] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recently, unprecedented clinical efficacy was observed during treatment of many solid tumors because of the introduction of programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) immune checkpoint inhibitors. Preliminary clinical data indicates that checkpoint inhibition also represents a promising therapeutic strategy for certain lymphoid malignancies. However, PD-1/PD-L1 expression levels on neoplastic cells and in the tumor microenvironment vary among subtypes and their prognostic implications remain uncertain. MAIN BODY Here, we review the clinicopathological significance of PD-1/PD-L1 expression in lymphomas. Increased infiltration of PD-1+ tumor-infiltrating lymphocytes (TILs) is a favorable prognostic factor in diffuse large B-cell lymphoma (DLBCL) but not in Hodgkin's lymphoma (HL). Higher numbers of PD-1+ TILs were observed in follicular lymphoma (FL) than in other subtypes of B-cell lymphoma; however, its prognostic significance remains controversial. Infiltration of PD-L1+ immune cells showed a trend toward better overall survival in nasal natural killer (NK)/T-cell lymphoma and adult T-cell leukemia/lymphoma, more likely to be classified as activated macrophages and dendritic cells in microenvironment but its biological effect is not clarified. Peripheral PD-1+ T cells could be detected in blood samples from DLBCL and chronic lymphocytic leukemia (CLL) and correlated with disease progression and poor prognosis. PD-1+ neoplastic T cells were more frequently observed in cutaneous T-cell lymphoma, including Sézary syndrome and mycosis fungoides, which may be involved in the progression of epithelial-derived T lymphoma. Studies on PD-L1 expression in neoplastic cells mostly focused on DLBCL. PD-L1+ neoplastic cells were observed only in a small subset of DLBCL, mainly associated with activated B cell (ABC) subtypes and Epstein-Barr virus (EBV) positivity; however, its prognostic role remains controversial. In either T or B lymphoma, elevated serum or plasma levels of soluble PD-L1 represent adverse prognostic factors. Notably, in clinical trials of classical HL, the frequency of 9p24.1 chromosome alterations increases the abundance of PD-1 ligand expression, appearing to predict responses to anti-PD-1/PD-L1 therapy. The cytogenetic alterations affecting chromosome 9p24.1 including the CIITA rearrangement were also frequently observed in certain specific subtypes of large B-cell lymphomas. CONCLUSIONS The clinical roles of PD-1/PD-L1 expression vary between subtypes of lymphoma. Future studies should delineate the prognostic and predictive roles of PD-1 and PD-L1 expression.
Collapse
Affiliation(s)
- Mixue Xie
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xianbo Huang
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xiujin Ye
- Senior Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | - Wenbin Qian
- Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China; Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
25
|
Gao Z, Tong C, Wang Y, Chen D, Wu Z, Han W. Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells. J Genet Genomics 2019; 46:367-377. [PMID: 31466926 DOI: 10.1016/j.jgg.2019.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptor T-cell (CAR T) therapy is a kind of effective cancer immunotherapy. However, designing CARs remains a challenge because many targetable antigens are shared by T cells and tumor cells. This shared expression of antigens can cause CAR T cell fratricide. CD38-targeting approaches (e.g., daratumumab) have been used in clinical therapy and have shown promising results. CD38 is a kind of surface glycoprotein present in a variety of cells, such as T lymphocytes and tumor cells. It was previously reported that CD38-based CAR T cells may undergo apoptosis or T cell-mediated killing (fratricide) during cell manufacturing. In this study, a CAR containing a sequence targeting human CD38 was designed to be functional. To avoid fratricide driven by CD38 and ensure the production of CAR T cells, two distinct strategies based on antibodies (clone MM12T or clone MM27) or proteins (H02H or H08H) were used to block CD38 or the CAR single-chain variable fragment (scFv) domain, respectively, on the T cell surface. The results indicated that the antibodies or proteins, especially the antibody MM27, could affect CAR T cells by inhibiting fratricide while promoting expansion and enrichment. Anti-CD38 CAR T cells exhibited robust and specific cytotoxicity to CD38+ cell lines and tumor cells. Furthermore, the levels of the proinflammatory factors TNF-α, IFN-γ and IL-2 were significantly upregulated in the supernatants of A549CD38+ cells. Finally, significant control of disease progression was demonstrated in xenograft mouse models. In conclusion, these findings will help to further enhance the expansion, persistence and function of anti-CD38 CAR T cells in subsequent clinical trials.
Collapse
Affiliation(s)
- Zhitao Gao
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100086, China
| | - Chuan Tong
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100086, China
| | - Yao Wang
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100086, China
| | - Deyun Chen
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100086, China
| | - Zhiqiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100086, China.
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100086, China.
| |
Collapse
|
26
|
Au-Yeung RKH, Burkhardt B, Woessmann W, Klapper W. CD38 is not expressed in pediatric ALK-positive anaplastic large cell lymphoma. Pediatr Blood Cancer 2019; 66:e27541. [PMID: 30408331 DOI: 10.1002/pbc.27541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Rex K H Au-Yeung
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel/University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University of Münster, Münster, Germany
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel/University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
27
|
Atanackovic D, Luetkens T. Biomarkers for checkpoint inhibition in hematologic malignancies. Semin Cancer Biol 2018; 52:198-206. [PMID: 29775689 DOI: 10.1016/j.semcancer.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/27/2023]
Abstract
In the past few years we have seen remarkable paradigm shifts in the treatment of many solid tumors due to the introduction of inhibitors targeting immune checkpoints such as PD-1/PD-L1 and CTLA-4. Recent results indicate that checkpoint inhibition also represents a very promising approach for certain types of hematologic malignancies. Unfortunately, treatment with checkpoint inhibitors is also associated with substantial toxicities and high costs and only a subset of patients appears to derive clinical benefit from these treatments. This demonstrates the urgent need for biomarkers for the identification of patient populations that are likely to respond to this type of therapy and/or have fewer side effects. Here, we have reviewed available information on the prognostic and predictive value of biomarkers for anti-CTLA-4 and anti-PD-1/PD-L1 as the most commonly used checkpoint inhibitors. There are currently no reliable biomarkers capable of predicting responses to anti-CTLA-4 agents, such as ipilimumab, in hematologic malignancies. Certain polymorphisms in the CTLA-4 gene, however, seem to have an impact on the patients' outcome, especially in the case of chronic lymphocytic leukemia (CLL). There is now sufficient data supporting PD-L1 expression levels in the tumor tissue as an independent prognostic factor in B cell lymphomas such as diffuse large B-cell lymphoma (DLBCL). Overexpression of PD-L1 in the tumor tissue and elevated serum levels of soluble PD-L1 may also represent adverse prognostic factors in certain subtypes of T cell lymphomas. Finally, expression levels of PD-L1 also seem to predict responses to anti-PD-1/PD-L1 approaches in patients with Hodgkin lymphoma. Future studies will have to further delineate the prognostic/predictive role of PD-L1 expression as a biomarker in hematologic malignancies and may be able to identify confounding variables, which will hopefully to some extent be generalizable to other types of anti-tumor immunotherapies.
Collapse
Affiliation(s)
- Djordje Atanackovic
- Multiple Myeloma Program & Cancer Immunology, Division of Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, United States.
| | - Tim Luetkens
- Multiple Myeloma Program & Cancer Immunology, Division of Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, United States
| |
Collapse
|
28
|
Overlap at the molecular and immunohistochemical levels between angioimmunoblastic T-cell lymphoma and a subgroup of peripheral T-cell lymphomas without specific morphological features. Oncotarget 2018; 9:16124-16133. [PMID: 29662631 PMCID: PMC5882322 DOI: 10.18632/oncotarget.24592] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
The overlap of morphology and immunophenotype between angioimmunoblastic T-cell lymphoma (AITL) and other nodal peripheral T-cell lymphomas (n-PTCLs) is a matter of current interest whose clinical relevance and pathogenic background have not been fully established. We studied a series of 98 n-PTCL samples (comprising 57 AITL and 41 PTCL-NOS) with five TFH antibodies (CD10, BCL-6, PD-1, CXCL13, ICOS), looked for mutations in five of the genes most frequently mutated in AITL (TET2, DNMT3A, IDH2, RHOA and PLCG1) using the Next-Generation-Sequencing Ion Torrent platform, and measured the correlations of these characteristics with morphology and clinical features. The percentage of mutations in the RHOA and TET2 genes was similar (23.5% of cases). PLCG1 was mutated in 14.3%, IDH2 in 11.2% and DNMT3A in 7.1% of cases, respectively. In the complete series, mutations in RHOA gene were associated with the presence of mutations in IDH2, TET2 and DNMT3A (p < 0.001, p = 0.043, and p = 0.029, respectively). Fourteen cases featured RHOA mutations without TET2 mutations. A close relationship was found between the presence of these mutations and a TFH-phenotype in AITL and PTCL-NOS patients. Interestingly, BCL-6 expression was the only TFH marker differentially expressed between AITL and PTCL-NOS cases. There were many fewer mutated cases than there were cases with a TFH phenotype. Overall, these data suggest alternative ways by which neoplastic T-cells overexpress these proteins. On the other hand, no clinical or survival differences were found between any of the recognized subgroups of patients with respect to their immunohistochemistry or mutational profile.
Collapse
|
29
|
Immune Dysfunction in Non-Hodgkin Lymphoma: Avenues for New Immunotherapy-Based Strategies. Curr Hematol Malig Rep 2017; 12:484-494. [DOI: 10.1007/s11899-017-0410-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|