1
|
Zhang Y, Liu T, Li P, Xing Z, Mi L, He T, Wei T, Wu W. Potential therapeutic targets of eukaryotic translation initiation factors in tumor therapy. Eur J Med Chem 2025; 291:117638. [PMID: 40273663 DOI: 10.1016/j.ejmech.2025.117638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Translation initiation is the first and rate-limiting step in protein synthesis, and its dysregulation is frequently observed in various malignancies. Cap-dependent translation, the predominant form of translation initiation, relies on the coordinated action of eukaryotic translation initiation factors (eIFs), including eIF1, eIF2, eIF4, and others. These factors play critical roles in regulating the efficiency and fidelity of protein synthesis, and their overexpression has been linked to tumor progression, proliferation, and metastasis. Notably, certain eIFs have emerged as potential prognostic markers due to their elevated expression in tumors. Targeting eIFs represents a promising strategy, particularly for cancers characterized by aberrant eIF activity. In this review, we summarize the roles of individual eIFs in cap-dependent translation and discuss their potential as therapeutic targets in cancer treatment. We also highlight recent advances in drug discovery efforts aimed at modulating eIF activity, providing insights into the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianyou Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengyu Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zygmunciak P, Dancewicz H, Stróżna K, Błażowska O, Bieliński K, Robak T, Puła B. Double Strike in Chronic Lymphocytic Leukemia-The Combination of BTK and BCL2 Inhibitors in Actual and Future Clinical Practice. Int J Mol Sci 2025; 26:3193. [PMID: 40243993 PMCID: PMC11989886 DOI: 10.3390/ijms26073193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
In the recent 2024 ESMO guidelines, the combination of venetoclax and ibrutinib was listed as one of the first-line treatment options for CLL patients. These drugs were first-in-class medicines that revolutionized CLL management, extending patients' overall survival even in cases refractory to immunochemotherapy. However, since the approval of both compounds, more and more Bruton Tyrosine Kinase inhibitors (BTKis) and B-cell lymphoma 2 inhibitors (BCL2is) have been discovered. Their efficacy and safety are the reasons for their use in monotherapy among both treatment-naïve and relapsed patients with CLL. Currently, several ongoing clinical trials are investigating the rationale for the combination of BCL2is and BTKis. In this review, we discuss the recent advancements in the field of co-therapy with BTKis and BCL2is.
Collapse
Affiliation(s)
| | - Hanna Dancewicz
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Katarzyna Stróżna
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Olga Błażowska
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Krzysztof Bieliński
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland; (P.Z.)
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| | - Bartosz Puła
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| |
Collapse
|
3
|
Rippel N, Sheppard R, Kittai AS. Updates in the Management of Richter Transformation. Cancers (Basel) 2024; 17:95. [PMID: 39796724 PMCID: PMC11720094 DOI: 10.3390/cancers17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival. Taken together, these considerations precipitate a significant unmet need for novel therapeutic strategies that improve the outcomes of patients with RT. Through this review, we will explore current data on emerging regimens targeting BTK, BCL-2, CD79, CD20, PI3K, and PD-1-both as single agents and as combination therapies with or without concurrent chemoimmunotherapy. Furthermore, we will review the role of bispecific T-cell engagers, anti-CD19 chimeric antigen receptor T-cell therapies, and hematopoietic stem cell transplantation in RT. To guide therapeutic decision-making, we will outline an algorithmic approach to the management of RT, with particular emphasis on prioritization of clinical trial enrollment and utilization of an ever-evolving array of novel therapies.
Collapse
Affiliation(s)
| | | | - Adam S. Kittai
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Xing Y, Zhao K, Zhang Y, Wang Y. BTK inhibition in primary central nervous system lymphoma: mechanisms, clinical efficacy, and future perspectives. Front Oncol 2024; 14:1463505. [PMID: 39777345 PMCID: PMC11703922 DOI: 10.3389/fonc.2024.1463505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
The prognosis of primary central nervous system lymphoma (PCNSL) patients is relatively poor, and there is currently no standard treatment plan. Most patients choose high-dose chemotherapy based on methotrexate. While traditional chemotherapy combined with biological therapy has achieved limited results, some patients still do not respond to treatment or cannot tolerate its toxicity and side effects. Bruton's tyrosine kinase (BTK) is a key enzyme in B-cell receptor signaling, and its activation is critical for B-cell survival and proliferation. In recent years, BTK inhibitors have shown great potential in treating lymphomas derived from various B cells because of their strong targeting ability and relatively few side effects. They may also be a reasonable treatment choice for PCNSL. This article reviews the mechanism of action, clinical research, adverse reactions, and other issues of BTK inhibitors in treating PCNSL to provide a reference for individualized treatment of patients with PCNSL.
Collapse
Affiliation(s)
- Yurou Xing
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Stanchina MD, Montoya S, Danilov AV, Castillo JJ, Alencar AJ, Chavez JC, Cheah CY, Chiattone C, Wang Y, Thompson M, Ghia P, Taylor J, Alderuccio JP. Navigating the changing landscape of BTK-targeted therapies for B cell lymphomas and chronic lymphocytic leukaemia. Nat Rev Clin Oncol 2024; 21:867-887. [PMID: 39487228 DOI: 10.1038/s41571-024-00956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
The B cell receptor (BCR) signalling pathway has an integral role in the pathogenesis of many B cell malignancies, including chronic lymphocytic leukaemia, mantle cell lymphoma, diffuse large B cell lymphoma and Waldenström macroglobulinaemia. Bruton tyrosine kinase (BTK) is a key node mediating signal transduction downstream of the BCR. The advent of BTK inhibitors has revolutionized the treatment landscape of B cell malignancies, with these agents often replacing highly intensive and toxic chemoimmunotherapy regimens as the standard of care. In this Review, we discuss the pivotal trials that have led to the approval of various covalent BTK inhibitors, the current treatment indications for these agents and mechanisms of resistance. In addition, we discuss novel BTK-targeted therapies, including covalent, as well as non-covalent, BTK inhibitors, BTK degraders and combination doublet and triplet regimens, to provide insights on the best current treatment paradigms in the frontline setting and at disease relapse.
Collapse
Affiliation(s)
- Michele D Stanchina
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Skye Montoya
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexey V Danilov
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alvaro J Alencar
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chan Y Cheah
- Division of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Linear Clinical Research, Nedlands, Western Australia, Australia
| | - Carlos Chiattone
- Hematology and Oncology Discipline, Hospital Samaritano-Higienópolis, São Paulo, Brazil
| | - Yucai Wang
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Meghan Thompson
- Leukaemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Ghia
- Division of Experimental Oncology, IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Justin Taylor
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo Alderuccio
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Wang ZH, Zheng X, Rao GW, Zheng Q. Targeted small molecule therapy and inhibitors for lymphoma. Future Med Chem 2024; 16:1465-1484. [PMID: 39016063 PMCID: PMC11352716 DOI: 10.1080/17568919.2024.2359893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/21/2024] [Indexed: 07/18/2024] Open
Abstract
Lymphoma, a blood tumor, has become the ninth most common cancer in the world in 2020. Targeted inhibition is one of the important treatments for lymphoma. At present, there are many kinds of targeted drugs for the treatment of lymphoma. Studies have shown that Histone deacetylase, Bruton's tyrosine kinase and phosphoinositide 3-kinase all play an important role in the occurrence and development of tumors and become important and promising inhibitory targets. This article mainly expounds the important role of these target protein in tumors, and introduces the mechanism of action, structure-activity relationship and clinical research of listed small molecule inhibitors of these targets, hoping to provide new ideas for the treatment of lymphoma.
Collapse
Affiliation(s)
- Zhong-Hui Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Xiang Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Quan Zheng
- Core Facility,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou324000, P. R. China
| |
Collapse
|
7
|
Hou J, Li X, Yan K, Zhang L, Loh TP, Xie P. Uracil-Cu(i) catalyst: allylation of cyclopropanols with Morita-Baylis-Hillman alcohols under water-tolerant conditions. Chem Sci 2024; 15:1143-1149. [PMID: 38239700 PMCID: PMC10793597 DOI: 10.1039/d3sc04890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Inspired by the high affinity of copper with DNA and RNA, a uracil-copper catalytic system was developed to promote ring-opening allylation of cyclopropanols with allylic alcohols under water-tolerant conditions. A new C-OH bond-breaking model can well resolve the trade-off between the need for acidic activators for C(allyl)-OH bond cleavage and the demand for strong basic conditions for generating homoenolates. Therefore, Morita-Baylis-Hillman alcohols, rather than their pre-activated versions, could be incorporated directly into dehydrative cross-coupling with cyclopropanols delivering water as the only by-product. A variety of functionalized δ,ε-unsaturated ketones were obtained in good-to-high yield with high E-selectivity.
Collapse
Affiliation(s)
- Jingwei Hou
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiaohong Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kaiyu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University Tianjin 300384 China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
8
|
Liu Y, Zhu Y, Chen H, Zhou J, Niu P, Shi D. Raptor mediates the selective inhibitory effect of cardamonin on RRAGC-mutant B cell lymphoma. BMC Complement Med Ther 2023; 23:336. [PMID: 37749558 PMCID: PMC10521446 DOI: 10.1186/s12906-023-04166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND mTORC1 (mechanistic target of rapamycin complex 1) is associated with lymphoma progression. Oncogenic RRAGC (Rag guanosine triphosphatase C) mutations identified in patients with follicular lymphoma facilitate the interaction between Raptor (regulatory protein associated with mTOR) and Rag GTPase. It promotes the activation of mTORC1 and accelerates lymphomagenesis. Cardamonin inhibits mTORC1 by decreasing the protein level of Raptor. In the present study, we investigated the inhibitory effect and possible mechanism of action of cardamonin in RRAGC-mutant lymphoma. This could provide a precise targeted therapy for lymphoma with RRAGC mutations. METHODS Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Protein expression and phosphorylation levels were determined using western blotting. The interactions of mTOR and Raptor with RagC were determined by co-immunoprecipitation. Cells overexpressing RagC wild-type (RagCWT) and RagC Thr90Asn (RagCT90N) were generated by lentiviral infection. Raptor knockdown was performed by lentivirus-mediated shRNA transduction. The in vivo anti-tumour effect of cardamonin was assessed in a xenograft model. RESULTS Cardamonin disrupted mTOR complex interactions by decreasing Raptor protein levels. RagCT90N overexpression via lentiviral infection increased cell proliferation and mTORC1 activation. The viability and tumour growth rate of RagCT90N-mutant cells were more sensitive to cardamonin treatment than those of normal and RagCWT cells. Cardamonin also exhibited a stronger inhibitory effect on the phosphorylation of mTOR and p70 S6 kinase 1 in RagCT90N-mutant cells. Raptor knockdown abolishes the inhibitory effects of cardamonin on mTOR. An in vivo xenograft model demonstrated that the RagCT90N-mutant showed significantly higher sensitivity to cardamonin treatment. CONCLUSIONS Cardamonin exerts selective therapeutic effects on RagCT90N-mutant cells. Cardamonin can serve as a drug for individualised therapy for follicular lymphoma with RRAGC mutations.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Peiguang Niu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| | - Daohua Shi
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
9
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|