1
|
Zhang A, Yang X, Zhang Y, Yu X, Mu W, Wei J. Unlocking the Potential of CAR-NK Cell Therapy: Overcoming Barriers and Challenges in the Treatment of Myeloid Malignancies. Mol Cancer Ther 2025; 24:536-549. [PMID: 39834301 DOI: 10.1158/1535-7163.mct-24-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Myeloid malignancies include various types of cancers that arise from the abnormal development or proliferation of myeloid cells within the bone marrow. Chimeric antigen receptor (CAR) T cell treatments, which show great potential for B cell and plasma cell cancers, face major challenges when used for myeloid malignancies. CAR natural killer (NK) cell-based immunotherapy encounters several challenges in treating myeloid cancers, including (i) poor gene transfer efficiency and expansion platforms in vitro, (ii) limited proliferation and persistence in vivo, (iii) antigenic heterogeneity, and (iv) an immunosuppressive tumor microenvironment. Despite these hurdles, "off-the-shelf" CAR-NK treatments showed encouraging results, marked by enhanced proliferation, prolonged persistence, enhanced tumor infiltration, and improved adaptability. This review offers a summary of the biological traits and cellular sources of NK cells along with a discussion of contemporary CAR designs. Furthermore, it addresses the challenges observed in preclinical research and clinical trials related to CAR-NK cell therapy for myeloid cancers, suggesting enhancement strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
2
|
Walter NS, Gorki V, Bhardwaj R, Punnakkal P. Endoplasmic Reticulum Stress: Implications in Diseases. Protein J 2025; 44:147-161. [PMID: 40082380 DOI: 10.1007/s10930-025-10264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Endoplasmic reticulum (ER) is a specialized organelle that plays a significant role in cellular function. The major functions of ER include protein synthesis and transport, folding of proteins, biosynthesis of lipids, calcium (Ca2+) storage, and redox balance. The loss of ER integrity results in the induction of ER stress within the cell due to the accumulation of unfolded, improperly folded proteins or changes in Ca2+ metabolism and redox balance of organelle. This ER stress commences the Unfolded Protein Response (UPR) that serves to counteract the ER stress via three sensors inositol requiring protein-1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor-6 (ATF6) that serve to establish ER homeostasis and alleviates ER stress. Severe ER dysfunction ultimately results in the induction of apoptosis. Increasing shreds of evidence suggest the implication of ER stress in the development and progression of several diseases viz. tuberculosis, malaria, Alzheimer's disease, Parkinson's disease, diabetes, and cancer. Activation of ER stress can be beneficial for treating some diseases while inhibiting the process can be useful in others. A deeper understanding of these pathways can provide key insights in designing novel therapeutics to treat these diseases.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Varun Gorki
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rishi Bhardwaj
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Pradeep Punnakkal
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Chodup P, Samodelov SL, Visentin M, Kullak‐Ublick GA. Drug-Induced Liver Injury Associated With Emerging Cancer Therapies. Liver Int 2025; 45:e70002. [PMID: 39853863 PMCID: PMC11760653 DOI: 10.1111/liv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Targeted therapies and immunotherapies have shown great promise as best-in-class treatments for several cancers with respect to efficacy and safety. While liver test abnormalities are rather common in patients treated with kinase inhibitors or immunotherapy, events of severe hepatotoxicity in these patients are rare in comparison with those associated with chemotherapeutics. The underlying mechanisms and risk factors for severe hepatotoxicity with novel oncology therapies are not well understood, complicating the drug-induced liver injury (DILI) risk assessment in the preclinical and clinical phases of drug development. The epidemiological and clinical characteristics, as well as mechanisms of liver toxicity, are described here to the current state of knowledge. Tools to study and assess the risk of DILI during drug development are concisely summarised, focusing on caveats thereof for novel oncology treatments. Emerging tools to optimise safety assessments and gather additional mechanistic insights into DILI are introduced. Particularly in oncology, where standard liver signals during drug development are tolerated to a marginally higher degree than in other indications due to the life-saving, life-extending and quality-of-life improvements for patients with severe or advanced cancers versus previous standard-of-care therapeutics, safety assessments must be tailored to the drug and indication. Trends in patient safety-centred drug development programmes and regulatory approval processes must continually be revisited and streamlined via obtaining an overall greater understanding of DILI and the tools available to assess mechanisms of injury, frequency, severity and prognosis.
Collapse
Affiliation(s)
- Piotr Chodup
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
| | - Sophia L. Samodelov
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
| | - Michele Visentin
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
| | - Gerd A. Kullak‐Ublick
- Department of Clinical Pharmacology and ToxicologyUniversity Hospital Zürich, University of ZürichZürichSwitzerland
- Mechanistic Safety, Patient Safety & Pharmacovigilance, Novartis DevelopmentBaselSwitzerland
| |
Collapse
|
4
|
Piñana JL, Vazquez L, Heras I, Aiello TF, López-Corral L, Arroyo I, Soler-Espejo E, García-Cadenas I, Garcia-Gutierrez V, Aroca C, Chorao P, Olave MT, Lopez-Jimenez J, Gómez MA, Arellano E, Cuesta-Casas M, Avendaño-Pita A, González-Santillana C, Hernández-Rivas JÁ, Roldán-Pérez A, Mico-Cerdá M, Guerreiro M, Morell J, Rodriguez-Galvez P, Labrador J, Campos D, Cedillo Á, Vidal CG, Martino R, Solano C. Omicron SARS-CoV-2 infection management and outcomes in patients with hematologic disease and recipients of cell therapy. Front Oncol 2024; 14:1389345. [PMID: 39015498 PMCID: PMC11250586 DOI: 10.3389/fonc.2024.1389345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Scarce real-life data exists for COVID-19 management in hematologic disease (HD) patients in the Omicron era. Purpose To assess the current clinical management and outcome of SARS-CoV-2 infection diagnosed, identify the risk factors for severe outcomes according to the HD characteristics and cell therapy procedures in a real-world setting. Methods A retrospective observational registry led by the Spanish Transplant Group (GETH-TC) with 692 consecutive patients with HD from December 2021 to May 2023 was analyzed. Results Nearly one-third of patients (31%) remained untreated and presented low COVID-19-related mortality (0.9%). Nirmatrelvir/ritonavir was used mainly in mild COVID-19 cases in the outpatient setting (32%) with a low mortality (1%), while treatment with remdesivir was preferentially administered in moderate-to-severe SARS-CoV-2 infection cases during hospitalization (35%) with a mortality rate of 8.6%. The hospital admission rate was 23%, while 18% developed pneumonia. COVID-19-related mortality in admitted patients was 14%. Older age, autologous hematopoietic stem cell transplantation (SCT), chimeric antigen receptor T-cell therapy, corticosteroids and incomplete vaccination were factors independently associated with COVID-19 severity and significantly related with higher rates of hospital admission and pneumonia. Incomplete vaccination status, treatment with prior anti-CD20 monoclonal antibodies, and comorbid cardiomyopathy were identified as independent risk factors for COVID-19 mortality. Conclusions The results support that, albeit to a lower extent, COVID-19 in the Omicron era remains a significant problem in HD patients. Complete vaccination (3 doses) should be prioritized in these immunocompromised patients. The identified risk factors may help to improve COVID-19 management to decrease the rate of severe disease, ICU admissions and mortality.
Collapse
Affiliation(s)
- José Luis Piñana
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Lourdes Vazquez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | | | | | - Lucia López-Corral
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ignacio Arroyo
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | | | | | - Cristina Aroca
- Hematology Division, Hospital Morales Meseguer, Murcia, Spain
| | - Pedro Chorao
- Hematology Division, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - María T. Olave
- Hematology Division, Hospital Clínico Universitario Lozano Blesa, IIS Aragon, Zaragoza, Spain
| | | | - Marina Acera Gómez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Elena Arellano
- Hematology Division, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Marian Cuesta-Casas
- Hematology Division, Hospital Regional Universitario Carlos Haya, Malaga, Spain
| | - Alejandro Avendaño-Pita
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca, Spain
| | | | | | | | - Mireia Mico-Cerdá
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Manuel Guerreiro
- Hematology Division, Hospital Clínico Universitario Lozano Blesa, IIS Aragon, Zaragoza, Spain
| | - Julia Morell
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Paula Rodriguez-Galvez
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Jorge Labrador
- Research unit, Hospital Universitario de Burgos, Burgos, Spain
| | - Diana Campos
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Ángel Cedillo
- Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH-TC) office, Madrid, Spain
| | | | - Rodrigo Martino
- Hematology Division, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carlos Solano
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine. University of Valencia, Valencia, Spain
| |
Collapse
|
5
|
Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med 2024; 30:40. [PMID: 38509524 PMCID: PMC10956371 DOI: 10.1186/s10020-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Nan Deng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiayi Peng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|