1
|
Messaoudi M, Pakstis AJ, Ezzaher T, Boussetta S, Ben Ammar Elgaaied A, Kidd KK, Cherni L. Genetic diversity of North African populations in the 17q21 genomic region. Mamm Genome 2024; 35:445-460. [PMID: 38965090 DOI: 10.1007/s00335-024-10051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The demographic history of human populations in North Africa has been characterized by complex migration processes that have determined the current genetic structure of these populations. We examined the autosomal markers of eight sampled populations in northern Africa (Tunisia and Libya) to explore their genetic structure and to place them in a global context. We genotyped a set of 30 autosomal single-nucleotide polymorphisms (SNPs) extending 9.5 Mb and encompassing the 17q21 inversion region. Our data include 403 individuals from Tunisia and Libya. To put our populations in the global context, we analyzed our data in comparison with other populations, including those of the 1000 Genomes Project. To evaluate the data, we conducted genetic diversity, principal component, STRUCTURE, and haplotype analyses. The analysis of genetic composition revealed the genetic heterogeneity of North African populations. The principal component and STRUCTURE analyses converged and revealed the intermediate position of North Africans between Europeans and Asians. Haplotypic analysis demonstrated that the normal (H1) and inverted (H2) polymorphisms in the chromosome 17q21 region occur in North Africa at frequencies similar to those found in European and Southwest Asian populations. The results highlight the complex demographic history of North Africa, reflecting the influence of genetic flow from Europe and the Near East that dates to the prehistoric period. These gene flows added to demographic factors (inbreeding, endogamy), natural factors (topography, Sahara), and cultural factors that play a role in the emergence of the diverse and heterogeneous genetic structures of North African populations. This study contributes to a better understanding of the complex structure of North African populations.
Collapse
Affiliation(s)
- Mohsen Messaoudi
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Takwa Ezzaher
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000, Monastir, Tunisia
| |
Collapse
|
2
|
Ben Sassi-Zaidy Y, Mohamed-Brahmi A, Chaouch M, Maretto F, Cendron F, Charfi-Cheikhrouha F, Ben Abderrazak S, Djemali M, Cassandro M. Historical Westward Migration Phases of Ovis aries Inferred from the Population Structure and the Phylogeography of Occidental Mediterranean Native Sheep Breeds. Genes (Basel) 2022; 13:genes13081421. [PMID: 36011332 PMCID: PMC9408117 DOI: 10.3390/genes13081421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, the genetic relationship and the population structure of western Mediterranean basin native sheep breeds are investigated, analyzing Maghrebian, Central Italian, and Venetian sheep with a highly informative microsatellite markers panel. The phylogeographical analysis, between breeds’ differentiation level (Wright’s fixation index), gene flow, ancestral relatedness measured by molecular coancestry, genetic distances, divergence times estimates and structure analyses, were revealed based on the assessment of 975 genotyped animals. The results unveiled the past introduction and migration history of sheep in the occidental Mediterranean basin since the early Neolithic. Our findings provided a scenario of three westward sheep migration phases fitting properly to the westward Neolithic expansion argued by zooarcheological, historical and human genetic studies.
Collapse
Affiliation(s)
- Yousra Ben Sassi-Zaidy
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Aziza Mohamed-Brahmi
- Laboratory of Agricultural Production Systems Sustainability in the North Western Region of Tunisia, Department of Animal Production, Ecole Supérieure d’Agriculture du Kef Boulifa, University of Jendouba, Le Kef 7119, Tunisia
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR16IPT09), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Fabio Maretto
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| | - Filippo Cendron
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Faouzia Charfi-Cheikhrouha
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Souha Ben Abderrazak
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Mnaour Djemali
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
| | - Martino Cassandro
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| |
Collapse
|
3
|
Mitochondrial Haplogroup Classification of Ancient DNA Samples Using Haplotracker. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5344418. [PMID: 35342764 PMCID: PMC8956381 DOI: 10.1155/2022/5344418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Mitochondrial DNA haplogroup classification is used to study maternal lineage of ancient human populations. The haplogrouping of ancient DNA is not easy because the DNA is usually found in small pieces in limited quantities. We have developed Haplotracker, a straightforward and efficient high-resolution haplogroup classification tool optimized specifically for ancient DNA samples. Haplotracker offers a user-friendly input interface for multiple mitochondrial DNA sequence fragments in a sample. It provides accurate haplogroup classification with full-length mitochondrial genome sequences and provides high-resolution haplogroup predictions for some fragmented control region sequences using a novel algorithm built on Phylotree mtDNA Build 17 (Phylotree) and our haplotype database (n = 118,869). Its performance for accuracy was demonstrated to be high through haplogroup classification using 8,216 Phylotree full-length and control region mitochondrial DNA sequences compared with HaploGrep 2, one of the most accurate current haplogroup classifiers. Haplotracker provides a novel haplogroup tracking solution for fragmented sequences to track subhaplogroups or verify the haplogroups efficiently. Using Haplotracker, we classified mitochondrial haplogroups to the final subhaplogroup level in nine ancient DNA samples extracted from human skeletal remains found in 2,000-year-old elite Xiongnu cemetery in Northeast Mongolia. Haplotracker can be freely accessed at https://haplotracker.cau.ac.kr.
Collapse
|
4
|
Al-Haj-Taib R, Mejri A, Børsting C, Pereira V, Elkamel S, Herrera RJ, Benammar-Elgaaied A, Fadhlaoui-Zid K. Genetic analysis of sixteen autosomal STR loci in three Tunisian populations from Makthar, Nabeul and Sousse. Ann Hum Biol 2022; 48:590-597. [DOI: 10.1080/03014460.2022.2032338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rim Al-Haj-Taib
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Abir Mejri
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen.
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen.
| | - Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Rene J. Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| | - Amel Benammar-Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
| | - Karima Fadhlaoui-Zid
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar, Tunis, 2092, Tunisia
- Department of Biology, College of Science, Taibah University, Al Madinah Al Monawarah, Saudi Arabia
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
5
|
Mitochondrial DNA and Alzheimer's disease: a first case-control study of the Tunisian population. Mol Biol Rep 2021; 49:1687-1700. [PMID: 34854014 DOI: 10.1007/s11033-021-06978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder in humans and presents a major health problem throughout the world. The etiology of AD is complex, and many factors are implicated, including mitochondria. Mitochondrial alteration has been proposed as a possible cause of AD. Therefore, several studies have focused on finding an association between inherited mitochondrial DNA variants and AD onset. METHODS In this study, we looked, for the first time, for a potential association between mitochondrial haplogroups or polymorphisms and AD in the Tunisian population. We also evaluated the distribution of the major genetic risk factor for AD, the apolipoprotein E epsilon 4 (APOE ε4), in this population. In total, 159 single-nucleotide polymorphisms (SNPs) of mitochondrial DNA haplogroups were genotyped in 254 individuals (58 patients and 196 controls). An additional genotyping of APOE ε4 was performed. RESULTS No significant association between mitochondrial haplogroups and AD was found. However, two individual SNPs, A5656G (p = 0.03821, OR = 10.46) and A13759G (p = 0.03719, OR = 10.78), showed a significant association with AD. APOE 4 was confirmed as a risk factor for AD (p = 0.000014). CONCLUSION Our findings may confirm the absence of a relation between mitochondrial haplogroups and AD and support the possible involvement of some inherited variants in the pathogenicity of AD.
Collapse
|
6
|
Insights into the Middle Eastern paternal genetic pool in Tunisia: high prevalence of T-M70 haplogroup in an Arab population. Sci Rep 2021; 11:15728. [PMID: 34344940 PMCID: PMC8333252 DOI: 10.1038/s41598-021-95144-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
To obtain refreshed insights into the paternal lineages of Tunisian populations, Y-chromosome diversity was assessed in two populations belonging to an Arab genealogical lineage, Kairouan and Wesletia, as well as in four Tunisian Andalusian populations, Testour, Slouguia, Qalaat-El-Andalous and El Alia. The Arabs from Kairouan revealed 73.47% of E-M81 and close affinities with Berber groups, indicating they are likely arabized Berbers, clearly differentiated from the Arabs from Wesletia, who harbored the highest frequency (71.8%) of the Middle Eastern component ever observed in North Africa. In the Tunisian Andalusians, the North African component largely prevailed, followed by the Middle Eastern contribution. Global comparative analysis highlighted the heterogeneity of Tunisian populations, among which, as a whole, dominated a set of lineages ascribed to be of autochthonous Berber origin (71.67%), beside a component of essentially Middle Eastern extraction (18.35%), and signatures of Sub-Saharan (5.2%), European (3.45%) and Asiatic (1.33%) contributions. The remarkable frequency of T-M70 in Wesletia (17.4%) prompted to refine its phylogeographic analysis, allowing to confirm its Middle Eastern origin, though signs of local evolution in Northern Africa were also detected. Evidence was clear on the ancient introduction of T lineages into the region, probably since Neolithic times associated to spread of agriculture.
Collapse
|
7
|
Mestiri S, Boussetta S, Pakstis AJ, Elkamel S, Elgaaied ABA, Kidd KK, Cherni L. Genetic diversity of the North African population revealed by the typing of SNPs in the DRD2/ANKK1 genomic region. Gene 2021; 777:145466. [PMID: 33524518 DOI: 10.1016/j.gene.2021.145466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
The dopamine - related genes, like dopamine D2 receptor (DRD2) gene and ankyrin repeat and kinase domain containing 1 (ANKK1) gene are implicated in neurological functions. Some polymorphisms of the DRD2/ANKK1 locus (TaqIA, TaqIB, TaqID) have been used to study genetic diversity and the evolution of human populations. The present investigation aims to assess the genetic diversity in seven North African populations in order to explore their genetic structure and to compare them to others worldwide populations studied for the same locus. Nine single nucleotide polymorphisms (SNPs) from the DRD2/ANKK1 locus (rs1800497 TaqIA, rs2242592, rs1124492, rs6277, rs6275, rs1079727, rs2002453, rs2234690 and rs1079597 TaqIB) were typed in 366 individuals from seven North African populations: six from Tunisia (Sousse, Smar, Kesra, Kairouan, Mehdia and Kerkennah) and one from Libya. The allelic frequencies of rs2002453 and rs2234690 were higher in the Smar population than in the other North African populations. More, the Smar population showed the lowest average heterozygosity (0.313). The principal component analysis (PCA) showed that the Smar population was clearly separated from others. Furthermore, linkage disequilibrium analysis shown a high linkage disequilibrium in the North African population and essentially in Smar population. Comparison with other world populations has shown that the heterozygosity of North African population was very close to that of the African and European populations. The PCA and the haplotypic analysis suggested the presence of an important Eurasian genetic component for the North African population. These results suggested that the Smar population was isolated from the others North Africans ones by its peculiar genetic structure because of isolation, endogamy and genetic drift. On the other hand, the North African population is characterized by a multi ancestral gene pool from Eurasia and sub-Saharan Africa due to human migration since prehistoric times.
Collapse
Affiliation(s)
- Souhir Mestiri
- Laboratory of Genetics, Biodiversity and Bioresource Valorization (LR11ES41), University of Monastir, Monastir 5000, Tunisia; Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia.
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Lotfi Cherni
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000 Monastir, Tunisia; Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| |
Collapse
|
8
|
Anagnostou P, Dominici V, Battaggia C, Boukhchim N, Ben Nasr J, Boussoffara R, Cancellieri E, Marnaoui M, Marzouki M, Bel Haj Brahim H, Bou Rass M, di Lernia S, Destro Bisol G. Berbers and Arabs: Tracing the genetic diversity and history of Southern Tunisia through genome wide analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:697-708. [PMID: 32936953 DOI: 10.1002/ajpa.24139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Tunisia has been a crossroads for people from Africa, Europe, and the Middle East since prehistoric times. At present, it is inhabited by two main ethnic groups, Arabs and Berbers, and several minorities. This study aims to advance knowledge regarding their genetic structure using new population samplings and a genome-wide approach. MATERIALS AND METHODS We investigated genomic variation, estimated ancestry components and dated admixture events in three Berber and two Arab populations from Southern Tunisia, mining a dataset including Middle Eastern, sub-Saharan, and European populations. RESULTS Differences in the proportion of North African, Arabian, and European ancestries and the varying impact of admixture and isolation determined significant heterogeneity in the genetic structure of Southern Tunisian populations. Admixture time estimates show a multilayer pattern of admixture events, involving both ethno-linguistic groups, which started around the mid XI century and lasted for nearly five centuries. DISCUSSION Our study provides evidence that the relationships between genetic and cultural diversity of old and new inhabitants of North Africa in southern Tunisia follow different patterns. The Berbers seem to have preserved a significant part of their common genomic heritage despite Islamization, Arab cultural influence, and linguistic diversity. Compared to Morocco and Algeria, southern Tunisian Arabs have retained a higher level of Arabian ancestry. This is more evident in the semi-nomad R'Baya, who have kept their original Bedouin lifestyle, than in the population from Douz, who have undergone multiple events of stratification and admixture.
Collapse
Affiliation(s)
- Paolo Anagnostou
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy.,Istituto Italiano di Antropologia, Italy
| | - Valentina Dominici
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy
| | - Cinzia Battaggia
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy
| | - Nouri Boukhchim
- Faculté des Lettres et Sciences Humaines, Université de Kairouan, Kairouan, Tunisia.,Laboratoire LMAIM, LR99ES01, Université de Tunis, Tunisia
| | - Jaâfar Ben Nasr
- Département d'Archéologie (FLSHK), LR 13 ES 11/ UR 16 ES 01, Université de Kairouan, Tunisia
| | | | | | - Marwa Marnaoui
- Dipartimento di Scienze dell'Antichità, Università di Roma "La Sapienza", Italy
| | - Meriem Marzouki
- Higher institute of fine arts, Department of Space Design, University of Sousse, Sousse, Tunisia
| | | | | | - Savino di Lernia
- Dipartimento di Scienze dell'Antichità, Università di Roma "La Sapienza", Italy.,GAES, University of Witwatersrand, Johannesburg, South Africa
| | - Giovanni Destro Bisol
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Italy.,Istituto Italiano di Antropologia, Italy
| |
Collapse
|
9
|
Serra-Vidal G, Lucas-Sanchez M, Fadhlaoui-Zid K, Bekada A, Zalloua P, Comas D. Heterogeneity in Palaeolithic Population Continuity and Neolithic Expansion in North Africa. Curr Biol 2019; 29:3953-3959.e4. [DOI: 10.1016/j.cub.2019.09.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/02/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023]
|
10
|
Eaaswarkhanth M, Melhem M, Sharma P, Nizam R, Al Madhoun A, Chaubey G, Alsmadi O, AlOzairi E, Al-Mulla F. Mitochondrial DNA D-loop sequencing reveals obesity variants in an Arab population. APPLICATION OF CLINICAL GENETICS 2019; 12:63-70. [PMID: 31213875 PMCID: PMC6541754 DOI: 10.2147/tacg.s198593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/13/2019] [Indexed: 01/11/2023]
Abstract
Background: The association of mitochondrial DNA (mtDNA) variations with obesity has been investigated in diverse populations across the world. However, such obesity-associated mtDNA examinations are rarely conducted in Arab populations. Materials and methods: We re-sequenced mtDNA displacement loop (D-loop) region of 395 Arab individuals of Kuwait. We categorized the individuals based on their BMI scores as obese (n=232; BMI ≥30 kg/m2), overweight (n=110; BMI ≥25 kg/m2 and <30 kg/m2), and lean (n=53; BMI <25 kg/m2). We performed all the statistical tests by combining obese and overweight individuals in one group. Association analyses were conducted applying Fisher's exact test and logistic regression model. Results: We identified that the mtDNA variations m.73A>G, and m.523delAC were positively correlated with obesity, while m.310T>C, and m.16318A>T were negatively associated. All these variants, except m.16318A>T, remain statistically significant after adjusting for age and gender. We found that the variant m.73A>G increases the likelihood of being obese by 6-fold, whereas haplogroup H decreases the probability of being obese in Arab individuals of Kuwait. Haplotype analysis revealed that a haplotype, A263G-C309CT-T310C, defining the H2a clade of H haplogroup, reduces the probability of being obese. Conclusion: Our study reports, for the first time, the obesity-related mtDNA variants in Arabs of Kuwait. Based on the mtDNA D-loop region variations, we detected particular variants and haplogroup that are related with increased and decreased probability of being obese in the Kuwait Arab population.
Collapse
Affiliation(s)
| | - Motasem Melhem
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Prem Sharma
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Osama Alsmadi
- Department of Cell Therapy & Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Ebaa AlOzairi
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, 15462, Kuwait
| |
Collapse
|
11
|
Usefulness of COMT gene polymorphisms in North African populations. Gene 2019; 696:186-196. [DOI: 10.1016/j.gene.2019.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
|
12
|
Badache H, Boussetta S, Elgaaeid AB, Cherni L, El-khil HK. Investigation of the genetic structure of Kabyle and Chaouia Algerian populations through the polymorphism of Alu insertion markers. Ann Hum Biol 2019; 46:150-159. [DOI: 10.1080/03014460.2019.1588994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hocine Badache
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Amel Benammar Elgaaeid
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Houssein Khodjet El-khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
- Department of Biomedical Sciences, College of Health Sciences Qatar University, Doha, Qatar
| |
Collapse
|