1
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Xu M, Li Z, Liang X, Li J, Ye Y, Qi P, Yan X. Transcriptomic Analysis Provides Insights into Candidate Genes and Molecular Pathways Involved in Growth of Mytilus coruscus Larvae. Int J Mol Sci 2024; 25:1898. [PMID: 38339176 PMCID: PMC10855951 DOI: 10.3390/ijms25031898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Growth is a fundamental aspect of aquaculture breeding programs, pivotal for successful cultivation. Understanding the mechanisms that govern growth and development differences across various stages can significantly boost seedling production of economically valuable species, thereby enhancing aquaculture efficiency and advancing the aquaculture industry. Mytilus coruscus, a commercially vital marine bivalve, underscores this importance. To decipher the intricate molecular mechanisms dictating growth and developmental disparities in marine shellfish, we conducted transcriptome sequencing and meticulously analyzed gene expression variations and molecular pathways linked to growth traits in M. coruscus. This study delved into the molecular and gene expression variations across five larval development stages, with a specific focus on scrutinizing the differential expression patterns of growth-associated genes using RNA sequencing and quantitative real-time PCR analysis. A substantial number of genes-36,044 differentially expressed genes (DEGs)-exhibited significant differential expression between consecutive developmental stages. These DEGs were then categorized into multiple pathways (Q value < 0.05), including crucial pathways such as the spliceosome, vascular smooth muscle contraction, DNA replication, and apoptosis, among others. In addition, we identified two pivotal signaling pathways-the Hedgehog (Hh) signaling pathway and the TGF-beta (TGF-β) signaling pathway-associated with the growth and development of M. coruscus larvae. Ten key growth-related genes were pinpointed, each playing crucial roles in molecular function and the regulation of growth traits in M. coruscus. These genes and pathways associated with growth provide deep insights into the molecular basis of physiological adaptation, metabolic processes, and growth variability in marine bivalves.
Collapse
Affiliation(s)
| | | | | | | | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (M.X.); (Z.L.); (X.L.); (J.L.); (X.Y.)
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (M.X.); (Z.L.); (X.L.); (J.L.); (X.Y.)
| | | |
Collapse
|
4
|
Sharma R, Malviya R. Cancer Stem Cells in Carcinogenesis and Potential Role in Pancreatic Cancer. Curr Stem Cell Res Ther 2024; 19:1185-1194. [PMID: 37711007 DOI: 10.2174/1574888x19666230914103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
A poor prognosis is associated with pancreatic cancer because of resistance during treatment and early distant metastases. The discovery of cancer stem cells has opened up novel avenues for research into the biology and treatment of cancer. Many investigations have pointed out the role of these types of stem cells in the oncogenesis and progression of hematologic and solid malignancies, specifically. Due to the existence of cancer stem cells in the proliferation and preservation of pancreatic tumors, such malignancies could be difficult to eradicate using conventional treatment techniques like chemotherapy and radiotherapy. It is hypothesized that pancreatic malignancies originate from a limited population of aberrant cancer stem cells to promote carcinogenesis, tumour metastasis, and therapeutic resistance. This review examines the role of pancreatic cancer stem cells in this disease and their significance in carcinogenesis, as well as the signals which modulate them, and also examines the ongoing clinical studies that are now being conducted with pancreatic stem cells.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
6
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
Malta M, AlMutiri R, Martin CS, Srour M. Holoprosencephaly: Review of Embryology, Clinical Phenotypes, Etiology and Management. CHILDREN 2023; 10:children10040647. [PMID: 37189898 DOI: 10.3390/children10040647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Holoprosencephaly (HPE) is the most common malformation of the prosencephalon in humans. It is characterized by a continuum of structural brain anomalies resulting from the failure of midline cleavage of the prosencephalon. The three classic subtypes of HPE are alobar, semilobar and lobar, although a few additional categories have been added to this original classification. The severity of the clinical phenotype is broad and usually mirrors the radiologic and associated facial features. The etiology of HPE includes both environmental and genetic factors. Disruption of sonic hedgehog (SHH) signaling is the main pathophysiologic mechanism underlying HPE. Aneuploidies, chromosomal copy number variants and monogenic disorders are identified in a large proportion of HPE patients. Despite the high postnatal mortality and the invariable presence of developmental delay, recent advances in diagnostic methods and improvements in patient management over the years have helped to increase survival rates. In this review, we provide an overview of the current knowledge related to HPE, and discuss the classification, clinical features, genetic and environmental etiologies and management.
Collapse
|
8
|
Mechanotransduction in tumor dynamics modeling. Phys Life Rev 2023; 44:279-301. [PMID: 36841159 DOI: 10.1016/j.plrev.2023.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Mechanotherapy is a groundbreaking approach to impact carcinogenesis. Cells sense and respond to mechanical stimuli, translating them into biochemical signals in a process known as mechanotransduction. The impact of stress on tumor growth has been studied in the last three decades, and many papers highlight the role of mechanics as a critical self-inducer of tumor fate at the in vitro and in vivo biological levels. Meanwhile, mathematical models attempt to determine laws to reproduce tumor dynamics. This review discusses biological mechanotransduction mechanisms and mathematical-biomechanical models together. The aim is to provide a common framework for the different approaches that have emerged in the literature from the perspective of tumor avascularity and to provide insight into emerging mechanotherapies that have attracted interest in recent years.
Collapse
|
9
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
10
|
Wang F, Huang X, Sun Y, Li Z, Sun R, Zhao T, Wang M, Yan C, Liu P. Sulforaphane regulates the proliferation of leukemia stem-like cells via Sonic Hedgehog signaling pathway. Eur J Pharmacol 2022; 919:174824. [DOI: 10.1016/j.ejphar.2022.174824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022]
|
11
|
Liu Y, Deng XH, Zhang X, Cong T, Chen D, Hall AJ, Ying L, Rodeo SA. The Role of Indian Hedgehog Signaling in Tendon Response to Subacromial Impingement: Evaluation Using a Mouse Model. Am J Sports Med 2022; 50:362-370. [PMID: 34904906 DOI: 10.1177/03635465211062244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The underlying cellular and molecular mechanisms involved in the development of tendinopathy due to subacromial supraspinatus tendon (SST) impingement and the response to subsequent removal of impingement remain unknown. PURPOSE To investigate the involvement of Indian hedgehog (IHH) signaling in the development of SST tendinopathy and the subsequent healing process after the relief of subacromial impingement in a novel mouse shoulder impingement model. STUDY DESIGN Controlled laboratory study. METHODS A total of 48 male wild-type C57BL/6 mice were used in this study. Supraspinatus tendinopathy was induced by inserting a microsurgical clip into the subacromial space bilaterally. Eleven mice were sacrificed at 4 weeks after surgery to establish impingement baseline; 24 mice underwent clip removal at 4 weeks after surgery and then were euthanized at 2 or 4 weeks after clip removal. Thirteen mice without surgical intervention were utilized as the control group. All SSTs were evaluated with biomechanical testing; quantitative histomorphometry after staining with hematoxylin and eosin, Alcian blue, and picrosirius red; and immunohistochemical staining (factor VIII, IHH, Patched1 [PTCH1], and glioma-associated oncogene homolog 1 [GLI1]). RESULTS The mean failure force and stiffness in the 4-week impingement group decreased significantly compared with the control group (P < .001) and gradually increased at 2 and 4 weeks after clip removal. Histological analysis demonstrated increased cellularity and disorganized collagen fibers in the SST, with higher modified Bonar scores at 4 weeks, followed by gradual improvement after clip removal. The IHH-positive area and PTCH1- and GLI1-positive cell percentages significantly increased after 4 weeks of clip impingement (20.64% vs 2.06%, P < .001; 53.9% vs 28.03%, P = .016; and 30% vs 12.19%, P = .036, respectively) and continuously increased after clip removal. CONCLUSION The authors' findings suggest that the hedgehog signaling pathway and its downstream signaling mediator and target GLI1 may play a role in the development and healing process of rotator cuff tendinopathy due to extrinsic rotator cuff impingement. CLINICAL RELEVANCE This study suggests the potential for the hedgehog pathway, together with its downstream targets, as candidates for further study as potential therapeutic targets in the treatment of supraspinatus tendinopathy.
Collapse
Affiliation(s)
- Yulei Liu
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.,Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Daoyun Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Arielle Jordan Hall
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Liang Ying
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
12
|
Xue Z, Wang W, Shen J, Zhang J, Zhang X, Liu X. A Patched-Like Protein PsPTL Is Not Essential for the Growth and Response to Various Stresses in Phytophthora sojae. Front Microbiol 2021; 12:673784. [PMID: 34690942 PMCID: PMC8530017 DOI: 10.3389/fmicb.2021.673784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae’s response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.
Collapse
Affiliation(s)
- Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinghuan Shen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xitao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Zhao H, Gao XY, Wu XJ, Zhang YB, Wang XF. The Shh/Gli1 signaling pathway regulates regeneration via transcription factor Olig1 expression after focal cerebral ischemia in rats. Neurol Res 2021; 44:318-330. [PMID: 34592910 DOI: 10.1080/01616412.2021.1981106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Ischemic stroke is a major cause of death in the global population, with a high disability and mortality rate. Lack of regenerative ability is considered to be the fundamental cause. This study aims to determine the effect of Shh pathway, which mediates regenerative signaling in response to CNS injury, on myelin repair and Olig1 expression in focal ischemic lesions in the rat. METHODS A model of middle cerebral artery occlusion (MCAO) was established using the intraluminal suture method where the middle cerebral artery (MCA) was restricted for 120 min. Cyclopamine, a specific inhibitor of Shh, or saline was administered 12 h after MCAO surgery and lasted for 7 days. After MCA occlusion, male Sprague-Dawley rats were randomly allocated to cyclopamine- or saline-treated groups. A group of no-injection animals after MCAO were used as controls. The Shh signaling pathway, myelinogenesis-related factor MBP and Olig1 were testedby immunohistochemistry and RT-PCR assay. RESULTS The levels of Shh and its component Gli1 were elevated from 1 d up to 14 d following ischemia, indicating that the Shh-Gli1 axis was broadly reactivated. Treatment with cyclopamine can partially block the Shh signaling pathway, prevent myelin repair, and decrease the Olig1 expression following ischemic stroke. CONCLUSION That blockade of Shh signaling concurrently with the creation of a lesion aggravated ischemic myelin damage, probably via its downstream effects on Olig1 transcription. Shh plays a contributory role during regeneration in the CNS, thereby providing promising new therapeutic strategies to assist in recovery from ischemic stroke.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Neurology, Dalian Municipal Central Hospital, Dalian
| | - Xiao-Yu Gao
- Department of Neurology, Yuhuangding Hospital, Yantai
| | - Xiao-Jun Wu
- Department of Neurology, Anshan Hospital, the First Affiliated Hospital of China Medical University, Anshan
| | - Yong-Bo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing
| | | |
Collapse
|
14
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
15
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
16
|
Enny A, Shanabag A, Thompson AW, Racicot B, Braasch I, Nakamura T. Cellular mechanisms of frontal bone development in spotted gar (Lepisosteus oculatus). Dev Dyn 2021; 250:1668-1682. [PMID: 33913218 DOI: 10.1002/dvdy.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms initiating vertebrate cranial dermal bone formation is a conundrum in evolutionary and developmental biology. Decades of studies have determined the developmental processes of cranial dermal bones in various vertebrates and identified possible inducers of dermal bone. However, evolutionarily derived characters of current experimental model organisms, such as non-homologous frontal bones between teleosts and sarcopterygians, hinder investigations of ancestral and conserved mechanisms of vertebrate cranial dermal bone induction. Thus, investigating such mechanisms with animals diverging at evolutionarily informative phylogenetic nodes is imperative. RESULTS We investigated the cellular foundations of skull frontal bone formation in the spotted gar Lepisosteus oculatus, a basally branching non-teleost actinopterygian. Whole-mount bone and cartilage staining and hematoxylin-eosin section staining revealed that mesenchymal cell condensations in the frontal bone of spotted gar develop in close association with the underlying cartilage. We also identified novel aspects of frontal bone formation: enrichment of F-actin, cellular membranes, and E-cadherin in condensing cells, and extension of podia-like structures from osteoblasts to the frontal bone, which may be responsible for bone mineral transport. CONCLUSION This study highlights the process of frontal bone formation with dynamic architectural changes of mesenchymal cells in spotted gar, an emerging non-teleost fish model system, illuminating supposedly ancestral and likely conserved developmental mechanisms of skull bone formation among vertebrates.
Collapse
Affiliation(s)
- Alyssa Enny
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Anusha Shanabag
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrew W Thompson
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, Michigan, USA
| | - Brett Racicot
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, Michigan, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
17
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Ichimiya S, Onishi H, Nagao S, Koga S, Sakihama K, Nakayama K, Fujimura A, Oyama Y, Imaizumi A, Oda Y, Nakamura M. GLI2 but not GLI1/GLI3 plays a central role in the induction of malignant phenotype of gallbladder cancer. Oncol Rep 2021; 45:997-1010. [PMID: 33650666 PMCID: PMC7860001 DOI: 10.3892/or.2021.7947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
We previously reported that Hedgehog (Hh) signal was enhanced in gallbladder cancer (GBC) and was involved in the induction of malignant phenotype of GBC. In recent years, therapeutics that target Hh signaling have focused on molecules downstream of smoothened (SMO). The three transcription factors in the Hh signal pathway, glioma‑associated oncogene homolog 1 (GLI1), GLI2, and GLI3, function downstream of SMO, but their biological role in GBC remains unclear. In the present study, the biological significance of GLI1, GLI2, and GLI3 were analyzed with the aim of developing novel treatments for GBC. It was revealed that GLI2, but not GLI1 or GLI3, was involved in the cell cycle‑mediated proliferative capacity in GBC and that GLI2, but not GLI1 or GLI3, was involved in the enhanced invasive capacity through epithelial‑mesenchymal transition. Further analyses revealed that GLI2 may function in mediating gemcitabine sensitivity and that GLI2 was involved in the promotion of fibrosis in a mouse xenograft model. Immunohistochemical staining of 66 surgically resected GBC tissues revealed that GLI2‑high expression patients had fewer numbers of CD3+ and CD8+ tumor‑infiltrating lymphocytes (TILs) and increased programmed cell death ligand 1 (PD‑L1) expression in cancer cells. These results suggest that GLI2, but not GLI1 or GLI3, is involved in proliferation, invasion, fibrosis, PD‑L1 expression, and TILs in GBC and could be a novel therapeutic target. The results of this study provide a significant contribution to the development of a new treatment for refractory GBC, which has few therapeutic options.
Collapse
Affiliation(s)
- Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shinjiro Nagao
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Satoko Koga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kukiko Sakihama
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akiko Fujimura
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuhiro Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
19
|
Charazac A, Fayyad N, Beal D, Bourgoin-Voillard S, Seve M, Sauvaigo S, Lamartine J, Soularue P, Moratille S, Martin MT, Ravanat JL, Douki T, Rachidi W. Impairment of Base Excision Repair in Dermal Fibroblasts Isolated From Nevoid Basal Cell Carcinoma Patients. Front Oncol 2020; 10:1551. [PMID: 32850458 PMCID: PMC7427476 DOI: 10.3389/fonc.2020.01551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
The nevoid basal cell carcinoma syndrome (NBCCS), also called Gorlin syndrome is an autosomal dominant disorder whose incidence is estimated at about 1 per 55,600–256,000 individuals. It is characterized by several developmental abnormalities and an increased predisposition to the development of basal cell carcinomas (BCCs). Cutaneous fibroblasts from Gorlin patients have been shown to exhibit an increased sensitivity to ionizing radiations. Mutations in the tumor suppressor gene PTCH1, which is part of the Sonic Hedgehog (SHH) signaling pathway, are responsible for these clinical manifestations. As several genetic mutations in the DNA repair genes are responsible of photo or radiosensitivity and high predisposition to cancers, we hypothesized that these effects in Gorlin syndrome might be due to a defect in the DNA damage response (DDR) and/or the DNA repair capacities. Therefore, the objective of this work was to investigate the sensitivity of skin fibroblasts from NBCCS patients to different DNA damaging agents and to determine the ability of these agents to modulate the DNA repair capacities. Gorlin fibroblasts showed high radiosensitivity and also less resistance to oxidative stress-inducing agents when compared to control fibroblasts obtained from healthy individuals. Gorlin fibroblasts harboring PTCH1 mutations were more sensitive to the exposure to ionizing radiation and to UVA. However, no difference in cell viability was shown after exposure to UVB or bleomycin. As BER is responsible for the repair of oxidative DNA damage, we decided to assess the BER pathway efficacy in Gorlin fibroblasts. Interestingly, a concomitant decrease of both BER gene expression and BER protein activity was observed in Gorlin fibroblasts when compared to control. Our results suggest that low levels of DNA repair within Gorlin cells may lead to an accumulation of oxidative DNA damage that could participate and partly explain the radiosensitivity and the BCC-prone phenotype in Gorlin syndrome.
Collapse
Affiliation(s)
- Aurélie Charazac
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Nour Fayyad
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - David Beal
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Sandrine Bourgoin-Voillard
- LBFA and BEeSy, PROMETHEE Proteomic Platform, Université Grenoble Alpes, Grenoble, France.,Inserm, U1055, PROMETHEE Proteomic Platform, Saint-Martin-d'Heres, France.,CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, La Tronche, France
| | - Michel Seve
- LBFA and BEeSy, PROMETHEE Proteomic Platform, Université Grenoble Alpes, Grenoble, France.,Inserm, U1055, PROMETHEE Proteomic Platform, Saint-Martin-d'Heres, France.,CHU Grenoble Alpes, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform, La Tronche, France
| | | | - Jérôme Lamartine
- CNRS UMR 5305, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, Lyon, France
| | - Pascal Soularue
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Sandra Moratille
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Michèle T Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, CEA/DRF/IBFJ/IRCM, Université Paris-Saclay, Evry, France
| | - Jean-Luc Ravanat
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Thierry Douki
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| | - Walid Rachidi
- SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
20
|
Zhang K, Yang X, Zhao Q, Li Z, Fu F, Zhang H, Zheng M, Zhang S. Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor. Stem Cells Int 2020; 2020:8892300. [PMID: 32849880 PMCID: PMC7441422 DOI: 10.1155/2020/8892300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Adipogenesis is the process through which preadipocytes differentiate into adipocytes. During this process, the preadipocytes cease to proliferate, begin to accumulate lipid droplets, and develop morphologic and biochemical characteristics of mature adipocytes. Mesenchymal stem cells (MSCs) are a type of adult stem cells known for their high plasticity and capacity to generate mesodermal and nonmesodermal tissues. Many mature cell types can be generated from MSCs, including adipocyte, osteocyte, and chondrocyte. The differentiation of stem cells into multiple mature phenotypes is at the basis for tissue regeneration and repair. Cancer stem cells (CSCs) play a very important role in tumor development and have the potential to differentiate into multiple cell lineages. Accumulating evidence has shown that cancer cells can be induced to differentiate into various benign cells, such as adipocytes, fibrocytes, osteoblast, by a variety of small molecular compounds, which may provide new strategies for cancer treatment. Recent studies have reported that tumor cells undergoing epithelial-to-mesenchymal transition can be induced to differentiate into adipocytes. In this review, molecular mechanisms, signal pathways, and the roles of various biological processes in adipose differentiation are summarized. Understanding the molecular mechanism of adipogenesis and adipose differentiation of cancer cells may contribute to cancer treatments that involve inducing differentiation into benign cells.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
21
|
Qi X, Li X. Mechanistic Insights into the Generation and Transduction of Hedgehog Signaling. Trends Biochem Sci 2020; 45:397-410. [PMID: 32311334 PMCID: PMC7174405 DOI: 10.1016/j.tibs.2020.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
Cell differentiation and proliferation require Hedgehog (HH) signaling and aberrant HH signaling causes birth defects or cancers. In this signaling pathway, the N-terminally palmitoylated and C-terminally cholesterylated HH ligand is secreted into the extracellular space with help of the Dispatched-1 (DISP1) and Scube2 proteins. The Patched-1 (PTCH1) protein releases its inhibition of the oncoprotein Smoothened (SMO) after binding the HH ligand, triggering downstream signaling events. In this review, we discuss the recent structural and biochemical studies on four major components of the HH pathway: the HH ligand, DISP1, PTCH1, and SMO. This research provides mechanistic insights into how HH signaling is generated and transduced from the cell surface into the intercellular space and will aid in facilitating the treatment of HH-related diseases.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Choi H, Liu Y, Yang L, Cho ES. Suppression of Hedgehog signaling is required for cementum apposition. Sci Rep 2020; 10:7285. [PMID: 32350360 PMCID: PMC7190817 DOI: 10.1038/s41598-020-64188-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling plays a broad role in the development of many organs including bone and teeth. It is noted that sustained Hh activity in osteoblasts negatively regulates postnatal development in mice. However, it remains unknown whether Hh signaling contributes to cementum formation. In this study, to define the roles of Hh signaling in cementum formation, we analyzed two kinds of transgenic mouse models for Hh signaling activation designed by the inactivation of Suppressor of Fused (Sufu), a negative regulator of Hh signaling, (SufuOC) and a forced endogenous activation of Smo (SmoM2OC) under the control of osteocalcin (OC) promoter-driven Cre recombinase. Interestingly, cellular cementum apposition was remarkably reduced in both mutants. Consistently, matrix formation and mineralization ability were down-regulated in OCCM-30, a cementoblast cell line, following treatment with a pharmaceutical Smo agonist. In addition, reductions in Osx expression and β-catenin activity, which are critical for cellular cementum formation, were also detected in vitro. Furthermore, the compound mutant mice designed for the stabilization of β-catenin with both Hh-Smo signaling activation in cementoblasts revealed a complete restoration of defective cellular cementum. In addition, Wnt antagonists such as Sostdc1 and Dkk1 were also induced by Smo activation and played a role in the reduction of Osx expression and β-catenin activity. Collectively, our data demonstrated that Hh signaling negatively regulates cementum apposition in a Wnt/β-catenin/Osx-dependent manner.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea.,Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Liu Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea.
| |
Collapse
|
23
|
Chen MJ, Xie WY, Jiang SG, Wang XQ, Yan HC, Gao CQ. Molecular Signaling and Nutritional Regulation in the Context of Poultry Feather Growth and Regeneration. Front Physiol 2020; 10:1609. [PMID: 32038289 PMCID: PMC6985464 DOI: 10.3389/fphys.2019.01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/23/2019] [Indexed: 12/03/2022] Open
Abstract
The normal growth and regeneration of feathers is important for improving the welfare and economic value of poultry. Feather follicle stem cells are the basis for driving feather development and are regulated by various molecular signaling pathways in the feather follicle microenvironment. To date, the roles of the Wnt, Bone Morphogenetic Protein (BMP), Notch, and Sonic Hedgehog (SHH) signaling pathways in the regulation of feather growth and regeneration are among the best understood. While these pathways regulate feather morphogenesis in different stages, their dysregulation results in a low feather growth rate, poor quality of plumage, and depilation. Additionally, exogenous nutrient intervention can affect the feather follicle cycle, promote the formation of the feather shaft and feather branches, preventing plumage abnormalities. This review focuses on our understanding of the signaling pathways involved in the transcriptional control of feather morphogenesis and explores the impact of nutritional factors on feather growth and regeneration in poultry. This work may help to develop novel mechanisms by which follicle stem cells can be manipulated to produce superior plumage that enhances poultry carcass quality.
Collapse
Affiliation(s)
- Meng-Jie Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen-Yan Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Shi-Guang Jiang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
24
|
Bellei B, Caputo S, Carbone A, Silipo V, Papaccio F, Picardo M, Eibenschutz L. The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. Int J Mol Sci 2020; 21:E720. [PMID: 31979112 PMCID: PMC7037136 DOI: 10.3390/ijms21030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in the tumor suppressor gene PATCHED1 (PTCH1) have been found to be associated in the majority of NBCCS cases. PATCH1 somatic mutations and loss of heterozygosity are also very frequent in sporadic BCCs. Unlike non-syndromic patients, NBCCS patients develop multiple BCCs in sun-protected skin area starting from early adulthood. Recent studies suggest that dermo/epidermal interaction could be implicated in BCC predisposition. According to this idea, NBCCS fibroblasts, sharing with keratinocytes the same PTCH1 germline mutation and consequent constitutive activation of the Hh pathway, display features of carcinoma-associated fibroblasts (CAF). This phenotypic traits include the overexpression of growth factors, specific microRNAs profile, modification of extracellular matrix and basement membrane composition, increased cytokines and pro-angiogenic factors secretion, and a complex alteration of the Wnt/-catenin pathway. Here, we review studies about the involvement of dermal fibroblasts in BCC predisposition of Gorlin syndrome patients. Further, we matched the emerged NBCCS fibroblast profile to those of CAF to compare the impact of cell autonomous "pre-activated state" due to PTCH1 mutations to those of skin tumor stroma.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Anna Carbone
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Vitaliano Silipo
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| |
Collapse
|
25
|
Liang H, Xu L, Zhao X, Pan K, Yi Z, Bai J, Qi X, Xin J, Li M, Ouyang K, Song X, Liu C, Qu M. RNA-Seq analysis reveals the potential molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. J Anim Physiol Anim Nutr (Berl) 2019; 104:1-11. [PMID: 31850600 DOI: 10.1111/jpn.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/01/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
Abstract
Daidzein has been reported to be effective in regulating lipid metabolism in animals. However, the molecular mechanisms of daidzein on adipogenesis in beef cattle are not yet reported and the results of daidzein on affecting lipid metabolism in other species have been conflicting. High-throughput sequencing of mRNA (RNA-Seq) technology was performed to elucidate the underlying molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. A total of 893 differentially expressed genes (DEGs) were identified by differential expression analysis, among which 405 genes were upregulated and 488 genes were downregulated. Bioinformatics analysis suggested that these DEGs were significantly enriched to the pathways related to lipid metabolism including ECM-receptor interaction, Glycolysis/Gluconeogenesis and Hedgehog signalling pathway. Daidzein significantly affected the candidate genes (Shh, Pec, Gli, Wnt6, DLK, IGFBP2, ID3 and C/EBPE) related to adipocyte differentiation. Besides, daidzein improved the ability of subcutaneous adipocytes in synthesizing triglycerides by directly using the long-chain fatty acids and enhanced the efficiency of triglyceride synthesis of subcutaneous adipocytes in Xianan steers. In conclusion, daidzein plays a positive role not only in adipogenic differentiation, but also in triglyceride synthesis in subcutaneous adipose tissue of Xianan beef cattle.
Collapse
Affiliation(s)
- Huan Liang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Zhonghua Yi
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Jun Bai
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xinglei Qi
- Animal Husbandry Bureau of Biyang County, Biyang, China
| | - Junping Xin
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Meifa Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
26
|
The Roles of Indian Hedgehog Signaling in TMJ Formation. Int J Mol Sci 2019; 20:ijms20246300. [PMID: 31847127 PMCID: PMC6941023 DOI: 10.3390/ijms20246300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
The temporomandibular joint (TMJ) is an intricate structure composed of the mandibular condyle, articular disc, and glenoid fossa in the temporal bone. Apical condylar cartilage is classified as a secondary cartilage, is fibrocartilaginous in nature, and is structurally distinct from growth plate and articular cartilage in long bones. Condylar cartilage is organized in distinct cellular layers that include a superficial layer that produces lubricants, a polymorphic/progenitor layer that contains stem/progenitor cells, and underlying layers of flattened and hypertrophic chondrocytes. Uniquely, progenitor cells reside near the articular surface, proliferate, undergo chondrogenesis, and mature into hypertrophic chondrocytes. During the past decades, there has been a growing interest in the molecular mechanisms by which the TMJ develops and acquires its unique structural and functional features. Indian hedgehog (Ihh), which regulates skeletal development including synovial joint formation, also plays pivotal roles in TMJ development and postnatal maintenance. This review provides a description of the many important recent advances in Hedgehog (Hh) signaling in TMJ biology. These include studies that used conventional approaches and those that analyzed the phenotype of tissue-specific mouse mutants lacking Ihh or associated molecules. The recent advances in understanding the molecular mechanism regulating TMJ development are impressive and these findings will have major implications for future translational medicine tools to repair and regenerate TMJ congenital anomalies and acquired diseases, such as degenerative damage in TMJ osteoarthritic conditions.
Collapse
|
27
|
Xu X, Yu Q, Fang M, Yi M, Yang A, Xie B, Yang J, Zhang Z, Dai Z, Qiu M. Stage-specific regulation of oligodendrocyte development by Hedgehog signaling in the spinal cord. Glia 2019; 68:422-434. [PMID: 31605511 DOI: 10.1002/glia.23729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 01/31/2023]
Abstract
Elucidation of signaling pathways that control oligodendrocyte (OL) development is a prerequisite for developing novel strategies for myelin repair in neurological diseases. Despite the extensive work outlining the importance of Hedgehog (Hh) signaling in the commitment and generation of OL progenitor cells (OPCs), there are conflicting reports on the role of Hh signaling in regulating OL differentiation and maturation. In the present study, we systematically investigated OPC specification and differentiation in genetically modified mouse models of Smoothened (Smo), an essential component of the Hh signaling pathway in vertebrates. Through conditional gain-of-function strategy, we demonstrated that hyperactivation of Smo in neural progenitors induced transient ectopic OPC generation and precocious OL differentiation accompanied by the co-induction of Olig2 and Nkx2.2. After the commitment of OL lineage, Smo activity is not required for OL differentiation, and sustained expression of Smo in OPCs stimulated cell proliferation but inhibited terminal differentiation. These findings have uncovered the stage-specific regulation of OL development by Smo-mediated Hh signaling, providing novel insights into the molecular regulation of OL differentiation and myelin repair.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Yu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Min Yi
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Aifen Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Binghua Xie
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zunyi Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhongmin Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
28
|
GLI1 activation by non-classical pathway integrin α vβ 3/ERK1/2 maintains stem cell-like phenotype of multicellular aggregates in gastric cancer peritoneal metastasis. Cell Death Dis 2019; 10:574. [PMID: 31366904 PMCID: PMC6668446 DOI: 10.1038/s41419-019-1776-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Peritoneal metastasis is one of the most important causes of postoperative death in patients with gastric cancer, and the exact mechanism remains unclear. The proliferation of multicellular aggregates of exfoliated malignant gastric cells in the abdominal cavity is the focus of current research. However, the mechanism how gastric cancer multicellular aggregates survive remains unclear. In this study, we demonstrated that multicellular aggregates of exfoliated gastric cancer cells in the abdominal cavity expressed a stem cell-Like phenotype. We found that Integrin αvβ3 not only mediated adhesion of gastric cancer multicellular aggregates to form independent functional units, but also maintained their stem cell-like phenotype by the non-classical pathway Integrin αvβ3/ERK1/2/GLI1. In addition, ERK1/2 directly regulates the transcriptional activity of GLI1. GLI1 is a key effector of the Integrin αvβ3 pathway in regulating stem cell-like phenotype in multicellular aggregates. Our data indicates that although there is a crosstalk between the non-classical Integrin αvβ3 pathway and the classical Hedgehog pathway, the activation of GLI1 is almost independent of the Hedgehog pathway in multicellular aggregates of gastric cancer cells. Our study provides a basis for blocking GLI1 activity in the prevention and treatment of peritoneal metastases of gastric cancer.
Collapse
|
29
|
Zhang Y, Hu C. WIF-1 and Ihh Expression and Clinical Significance in Patients With Lung Squamous Cell Carcinoma and Adenocarcinoma. Appl Immunohistochem Mol Morphol 2019; 26:454-461. [PMID: 27801732 DOI: 10.1097/pai.0000000000000449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study investigated the expression of wingless-type inhibitory factor-1 (WIF-1) and Ihh protein in tumor tissues and their clinical significance in patients with lung squamous cell carcinoma and adenocarcinoma. The expression of WIF-1 and Ihh protein in 74 squamous cell carcinomas and 76 adenocarcinomas was measured by immunohistochemistry. The percentage of positive WIF-1 protein expression was significantly higher, while positive Ihh protein expression was significantly lower in patients with well-differentiated lung squamous cell carcinoma and adenocarcinoma, tumor node metastasis (TNM) stage I disease, and lymph node metastasis than that in patients with poorly differentiated tumor, TNM stage III disease, and lymph node metastasis (P<0.05, <0.01). Kaplan-Meier survival analysis showed that TNM stage and lymph node metastasis were significantly associated with the mean overall survival of patients with lung squamous cell carcinoma and adenocarcinoma (P<0.05 or <0.01). Patients with lung squamous cell carcinoma (P=0.037) and adenocarcinoma (P=0.001) with positive Ihh protein expression survived significantly shorter than patients with negative Ihh protein expression. In contrast, no significant difference in mean survival was observed in patients with lung squamous cell carcinoma and adenocarcinoma with positive and negative WIF-1 protein expression (P>0.05). Ihh is a marker for poor prognosis in patients with lung squamous cell carcinoma and adenocarcinoma. WIF-1 is not a predictive marker for lung cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | | |
Collapse
|
30
|
Moradi F, Babashah S, Sadeghizadeh M, Jalili A, Hajifathali A, Roshandel H. Signaling pathways involved in chronic myeloid leukemia pathogenesis: The importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:581-589. [PMID: 31231484 PMCID: PMC6570743 DOI: 10.22038/ijbms.2019.31879.7666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential for self-renewal pathways in CML stem cells will be reviewed meticulously. MATERIALS AND METHODS In this review, a PubMed search using the keywords of Leukemia, signaling pathways, Musashi2-Numb was performed, and then we summarized different research works . RESULTS Although tyrosine kinase inhibitors such as Imatinib significantly kill and remove the cell with BCR-ABL1 translocation, they are unable to target BCR-ABL1 leukemia stem cells. The main problem is stem cells resistance to Imatinib therapy. Therefore, the identification and control of downstream molecules/ signaling route of the BCR-ABL1 that are involved in the survival and self-renewal of leukemia stem cells can be an effective treatment strategy to eliminate leukemia stem cells, which supposed to be cured by Musashi2-Numb signaling pathway. CONCLUSION The control of molecules /pathways downstream of the BCR-ABL1 and targeting Musashi2-Numb can be an effective therapeutic strategy for treatment of chronic leukemia stem cells. While Musashi2 is a poor prognostic marker in leukemia, in treatment and strategy, it has significant diagnostic value.
Collapse
Affiliation(s)
- Foruzan Moradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arsalan Jalili
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajifathali Roshandel
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Salaritabar A, Berindan-Neagoe I, Darvish B, Hadjiakhoondi F, Manayi A, Devi KP, Barreca D, Orhan IE, Süntar I, Farooqi AA, Gulei D, Nabavi SF, Sureda A, Daglia M, Dehpour AR, Nabavi SM, Shirooie S. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res 2019; 141:466-480. [DOI: 10.1016/j.phrs.2019.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/24/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
|
32
|
Super-enhancers: novel target for pancreatic ductal adenocarcinoma. Oncotarget 2019; 10:1554-1571. [PMID: 30899425 PMCID: PMC6422180 DOI: 10.18632/oncotarget.26704] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
Super-enhancers (SEs) are unique areas of the genome which drive high-level of transcription and play a pivotal role in the cell physiology. Previous studies have established several important genes in cancer as SE-driven oncogenes. It is likely that oncogenes may hack the resident tissue regenerative program and interfere with SE-driven repair networks, leading to the specific pancreatic ductal adenocarcinoma (PDAC) phenotype. Here, we used ChIP-Seq to identify the presence of SE in PDAC cell lines. Differential H3K27AC marks were identified at enhancer regions of genes including c-MYC, MED1, OCT-4, NANOG, and SOX2 that can act as SE in non-cancerous, cancerous and metastatic PDAC cell lines. GZ17-6.02 affects acetylation of the genes, reduces transcription of major transcription factors, sonic hedgehog pathway proteins, and stem cell markers. In accordance with the decrease in Oct-4 expression, ChIP-Seq revealed a significant decrease in the occupancy of OCT-4 in the entire genome after GZ17-6.02 treatment suggesting the possible inhibitory effect of GZ17-6.02 on PDAC. Hence, SE genes are associated with PDAC and targeting their regulation with GZ17-6.02 offers a novel approach for treatment.
Collapse
|
33
|
Liu K, Wang X, Zou C, Zhang J, Chen H, Tsang L, Yu MK, Chung YW, Wang J, Dai Y, Liu Y, Zhang X. Defective CFTR promotes intestinal proliferation via inhibition of the hedgehog pathway during cystic fibrosis. Cancer Lett 2019; 446:15-24. [PMID: 30639531 DOI: 10.1016/j.canlet.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
Hyperproliferation occurs in a variety of tissues and organs during cystic fibrosis (CF). However, the associated molecular mechanisms remain elusive. We investigated the molecular link between cystic fibrosis transmembrane conductance regulator (CFTR) defects and hyperproliferation, and showed that the length of the entire gastrointestinal tract was longer and the intestinal crypts were deeper in CF mice compared to those in wild-type animals. PCNA expression increased in CF mouse intestines and CFTR-knockdown cells. Villin1, an intestinal differentiation marker, was downregulated in CF mice. Ihh and Gli1 were significantly downregulated, whereas TCF4 was activated in CF mouse intestines and CFTR-knockdown Caco2 cells. Importantly, β-catenin activators rescued Gli1 suppression, suggesting that hedgehog signaling might be mediated by the Wnt/β-catenin pathway in the absence of functional CFTR. Moreover, PCNA positivity in the crypts of CF mice was alleviated by LiCl, which activates Wnt/β-catenin signaling. Further, a strong positive correlation was observed between the expression of CFTR and Ihh in intestines. Our study revealed a previously unidentified role of CFTR in regulating hedgehog signaling through β-catenin, providing novel insights into the physiological function of CFTR and CF-related diseases.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China; Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Wang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| | - Jieting Zhang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Chen
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510000, China
| | - Lailing Tsang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianhong Wang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| | - Yang Liu
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
34
|
Li Y, Domina A, Lim G, Chang T, Zhang T. Evaluation of curcumin, a natural product in turmeric, on Burkitt lymphoma and acute myeloid leukemia cancer stem cell markers. Future Oncol 2018; 14:2353-2360. [DOI: 10.2217/fon-2018-0202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: Curcumin, a bioactive compound from turmeric, eliminates cancer stem cells (CSCs) in some cancers. This study evaluates the effects of curcumin on CSC markers in Burkitt lymphoma and acute myeloid leukemia cells. Methods: Cells were treated with increasing concentrations of curcumin, followed by an ALDEFLUOR assay, colony formation assay and western blot analysis for the CSC-associated proteins, Gli-1, Notch-1 and Cyclin D1. Results: Markers associated with CSCs were decreased in cells treated with curcumin. This included a decrease in the percentage of ALDH-positive cells, a decrease in colony formation and the downregulation of Gli-1, Notch-1 and Cyclin D1. Conclusion: These results indicate that curcumin decreased CSC markers in lymphoma/leukemia cells, potentially through inhibiting self-renewal.
Collapse
Affiliation(s)
- Yanyan Li
- College of Science & Humanities, Husson University, Bangor, ME, USA
| | - Aaron Domina
- School of Pharmacy, Husson University, Bangor, ME, USA
| | - Gi Lim
- College of Science & Humanities, Husson University, Bangor, ME, USA
| | - Teralyn Chang
- School of Pharmacy, Husson University, Bangor, ME, USA
| | - Tao Zhang
- School of Pharmacy, Husson University, Bangor, ME, USA
| |
Collapse
|
35
|
Réda J, Vachtenheim J, Vlčková K, Horák P, Vachtenheim J, Ondrušová L. Widespread Expression of Hedgehog Pathway Components in a Large Panel of Human Tumor Cells and Inhibition of Tumor Growth by GANT61: Implications for Cancer Therapy. Int J Mol Sci 2018; 19:ijms19092682. [PMID: 30201866 PMCID: PMC6163708 DOI: 10.3390/ijms19092682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
The sonic Hedgehog/GLI signaling pathway (HH) is critical for maintaining tissue polarity in development and contributes to tumor stemness. Transcription factors GLI1–3 are the downstream effectors of HH and activate oncogenic targets. To explore the completeness of the expression of HH components in tumor cells, we performed a screen for all HH proteins in a wide spectrum of 56 tumor cell lines of various origin using Western blot analysis. Generally, all HH proteins were expressed. Important factors GLI1 and GLI2 were always expressed, only exceptionally one of them was lowered, suggesting the functionality of HH in all tumors tested. We determined the effect of a GLI inhibitor GANT61 on proliferation in 16 chosen cell lines. More than half of tumor cells were sensitive to GANT61 to various extents. GANT61 killed the sensitive cells through apoptosis. The inhibition of reporter activity containing 12xGLI consensus sites by GANT61 and cyclopamine roughly correlated with cell proliferation influenced by GANT61. Our results recognize the sensitivity of tumor cell types to GANT61 in cell culture and support a critical role for GLI factors in tumor progression through restraining apoptosis. The use of GANT61 in combined targeted therapy of sensitive tumors, such as melanomas, seems to be immensely helpful.
Collapse
Affiliation(s)
- Jiri Réda
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Kateřina Vlčková
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Pavel Horák
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, 15006 Prague, Czech Republic.
| | - Lubica Ondrušová
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| |
Collapse
|
36
|
Balak C, Belnap N, Ramsey K, Joss S, Devriendt K, Naymik M, Jepsen W, Siniard AL, Szelinger S, Parker ME, Richholt R, Izatt T, LaFleur M, Terraf P, Llaci L, De Both M, Piras IS, Rangasamy S, Schrauwen I, Craig DW, Huentelman M, Narayanan V. A novel
FBXO28
frameshift mutation in a child with developmental delay, dysmorphic features, and intractable epilepsy: A second gene that may contribute to the 1q41‐q42 deletion phenotype. Am J Med Genet A 2018; 176:1549-1558. [DOI: 10.1002/ajmg.a.38712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Chris Balak
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Newell Belnap
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Keri Ramsey
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Shelagh Joss
- West of Scotland Genetics ServiceQueen Elizabeth University HospitalGlasgow United Kingdom
| | - Koen Devriendt
- Center for Human Genetics (Centrum Menselijke Erfelijkheid)University of LeuvenLeuven Belgium
| | - Marcus Naymik
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Wayne Jepsen
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Ashley L. Siniard
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Szabolcs Szelinger
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- UCLA Pathology & Laboratory MedicineUCLA Center for the Health SciencesLos Angeles California
| | - Mary E. Parker
- Department of Physical TherapyTexas State UniversitySan Marcos Texas
- U.R. Our Hope, Undiagnosed and Rare Disorder OrganizationAustin Texas
| | - Ryan Richholt
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Tyler Izatt
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Madison LaFleur
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Panieh Terraf
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Lorida Llaci
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Matt De Both
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Ignazio S. Piras
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Isabelle Schrauwen
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- Department of Molecular and Human Genetics, Center for Statistical GeneticsBaylor College of MedicineHouston Texas
| | - David W. Craig
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
- Department of Translational GenomicsKeck School of Medicine of USCLos Angeles California
| | - Matt Huentelman
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| | - Vinodh Narayanan
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD)Translational Genomics Research InstitutePhoenix Arizona
| |
Collapse
|
37
|
Martinez AF, Kruszka PS, Muenke M. Extracephalic manifestations of nonchromosomal, nonsyndromic holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:246-257. [PMID: 29761634 DOI: 10.1002/ajmg.c.31616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Nonchromosomal, nonsyndromic holoprosencephaly (NCNS-HPE) has traditionally been considered as a condition of brain and craniofacial maldevelopment. In this review, we present the results of a comprehensive literature search supporting a wide spectrum of extracephalic manifestations identified in patients with NCNS-HPE. These manifestations have been described in case reports and in large cohorts of patients with "single-gene" mutations, suggesting that the NCNS-HPE phenotype can be more complex than traditionally thought. Likely, a complex network of interacting genetic variants and environmental factors is responsible for these systemic abnormalities that deviate from the usual brain and craniofacial findings in NCNS-HPE. In addition to the systemic consequences of pituitary dysfunction (as a direct result of brain midline defects), here we describe a number of extracephalic findings of NCNS-HPE affecting various organ systems. It is our goal to provide a guide of extracephalic features for clinicians given the important clinical implications of these manifestations for the management and care of patients with HPE and their mutation-positive relatives. The health risks associated with some manifestations (e.g., fatty liver disease) may have historically been neglected in affected families.
Collapse
Affiliation(s)
- Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul S Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Gu J, Saiyin H, Fu D, Li J. Stroma - A Double-Edged Sword in Pancreatic Cancer: A Lesson From Targeting Stroma in Pancreatic Cancer With Hedgehog Signaling Inhibitors. Pancreas 2018; 47:382-389. [PMID: 29521941 DOI: 10.1097/mpa.0000000000001023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is a uniformly lethal malignancy with an abundant dense desmoplastic stroma. Because of its dense stroma, conventional drugs were considered to not penetrate this physical barrier, and this caused a systemic drug resistance. Thus, abolishing this barrier with targeted agents is considered to improve the efficiency of chemotherapeutic treatment. The Hedgehog (Hh) signaling pathway is a critical regulator of pancreas development and plays diversified roles in pancreatic cancer stroma and neoplastic cells. Increasing Hh expression in neoplastic cells added desmoplastic stroma accumulation in orthotopic tumors, and Hh inhibitors that target the stroma have an ability to prolong the overall survival of Pdx-1-Cre/KrasG12D/p53R172H mice models via deleting the stromal components and increasing vascularity in pancreatic tumor. However, the failure of translation from bench to bedside indicate the complexity of the relationship between Hh signaling and desmoplastic stroma, and more insights into the complex relationships between Hh signaling pathway and stroma, even tumor cells, might help redesign Hh-targeted therapy. In this review, we discuss the possible mechanism of translation of Hh inhibitor in the clinic from pathology to molecular mechanism.
Collapse
|
39
|
Durmaz CD, Evans G, Smith MJ, Ertop P, Akay BN, Tuncalı T. A Novel PTCH1 Frameshift Mutation Leading to Nevoid Basal Cell Carcinoma Syndrome. Cytogenet Genome Res 2018; 154:57-61. [PMID: 29544218 DOI: 10.1159/000487747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a rare multisystemic autosomal dominant disorder typically presenting with cutaneous basal cell carcinomas, multiple keratocysts, and skeletal anomalies. NBCCS is caused by heterozygous mutations in the PTCH1 gene in chromosome 9q22, in the PTCH2 gene in 1p34, or the SUFU gene in 10q24.32. Here, we report on an 18-month-old boy presenting with medulloblastoma, frontal bossing, and multiple skeletal anomalies and his father who has basal cell carcinomas, palmar pits, macrocephaly, bifid ribs, calcification of falx cerebri, and a history of surgery for odontogenic keratocyst. These clinical findings were compatible with the diagnosis of NBCCS, and a novel mutation, c.1249delC; p.Gln417Lysfs*15, was found in PTCH1 causing a premature stop codon.
Collapse
Affiliation(s)
- Ceren D Durmaz
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Xie SY, Li G, Han C, Yu YY, Li N. RKIP reduction enhances radioresistance by activating the Shh signaling pathway in non-small-cell lung cancer. Onco Targets Ther 2017; 10:5605-5619. [PMID: 29200875 PMCID: PMC5703172 DOI: 10.2147/ott.s149200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is exceptionally deadly because the tumors lack sensitive early-stage diagnostic biomarkers and are resistant to radiation and chemotherapy. Here, we investigated the role and mechanism of Raf kinase inhibitory protein (RKIP) in NSCLC radioresistance. The clinical data showed that the RKIP expression level was generally lower in radioresistant NSCLC tissues than in radiosensitive tissues. Reduced RKIP expression was related to NSCLC radioresistance and poor prognosis. In vitro experiments showed that RKIP knockdown increased radioresistance and metastatic ability in NSCLC cell lines. Mechanistically, RKIP reduction activated the Shh signaling pathway by derepressing Smoothened (Smo) and initiating glioma-associated oncogene-1 (Gli1)-mediated transcription in NSCLC. In addition, the inappropriately activated Shh–Gli1 signaling pathway then enhanced cancer stem cell (CSC) expression in the cell lines. The increasing quantity of CSCs in the tumor ultimately promotes the radiation resistance of NSCLC. Together, these results suggest that RKIP plays a vital role in radiation response and metastasis in NSCLC. RKIP reduction enhances radioresistance by activating the Shh signaling pathway and initiating functional CSCs. This role makes it a promising therapeutic target for improving the efficacy of NSCLC radiation treatment.
Collapse
Affiliation(s)
- Shi-Yang Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Chong Han
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Yang-Yang Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Nan Li
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| |
Collapse
|
41
|
Zhang HQ, Sun Y, Li JQ, Huang LM, Tan SS, Yang FY, Li H. The expression of microRNA-324-3p as a tumor suppressor in nasopharyngeal carcinoma and its clinical significance. Onco Targets Ther 2017; 10:4935-4943. [PMID: 29066913 PMCID: PMC5644595 DOI: 10.2147/ott.s144223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective This study aimed to determine the expression, clinical significance, and possible biologic function of microRNA-324-3p in nasopharyngeal carcinoma (NPC) tissues. Methods In total, 54 NPC and 35 control tissues were collected. The correlation between miR-324-3p expression and the clinicopathologic characteristics was analyzed. A dual-luciferase reporter gene assay was employed to examine the predicted target gene of miR-324-3p. The miR-324-3p expression level in 5–8F cells was determined with quantitative reverse transcription-polymerase chain reaction following the transfection of miR-324-3p mimics and inhibitors. Cell proliferation and the percentage of apoptosis were measured with MTT and flow cytometry. Cell invasion ability was assessed by Transwell invasion assay. Results Our results showed that miR-324-3p was downregulated in the NPC tissues. The expression level of miR-324-3p in poorly differentiated NPC was significantly reduced in comparison with that in well/moderately differentiated NPC. The expression level in clinical stages III/IV was lower than that in clinical stages I/II. Moreover, the expression level of miR-324-3p was significantly lower in NPC patients with lymph node metastasis than that in NPC patients without lymph node metastasis. NPC patients with higher levels of miR-324-3p expression also demonstrated a longer survival time. Predictions from bioinformatics indicated the Hedgehog pathway transcription gene GLI3 as the target gene of miR-324-3p, and the dual- luciferase reporter assay showed that miR-324-3p is directly combined with the 3′-untranslated region of GLI3. The overexpression of miR-324-3p suppressed cell proliferation and invasion, and it enhanced apoptosis in 5–8F cells. Conclusion miR-324-3p can act as a tumor suppressor in NPC cells by the negative regula- tion of GLI3 gene.
Collapse
Affiliation(s)
- Han-Qun Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, People's Republic of China
| | - Yi Sun
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, People's Republic of China
| | - Jian-Quan Li
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, UK.,Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guizhou, People's Republic of China
| | - Li-Min Huang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, People's Republic of China
| | - Shi-Sheng Tan
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, People's Republic of China
| | - Fei-Yue Yang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, People's Republic of China
| | - Hang Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, People's Republic of China
| |
Collapse
|
42
|
Tayyab M, Shahi MH, Farheen S, Mariyath MPM, Khanam N, Castresana JS, Hossain MM. Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression. J Neurosci Res 2017. [PMID: 28631844 DOI: 10.1002/jnr.24104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are various theories to explain the pathophysiology of depression and support its diagnosis and treatment. The roles of monoamines, brain-derived neurotrophic factor (BDNF), and Wnt signaling are well researched, but sonic hedgehog (Shh) signaling and its downstream transcription factor Gli1 are not well studied in depression. Shh signaling plays a fundamental role in embryonic development and adult hippocampal neurogenesis and also involved in the growth of cancer. In this article, we summarize the evidence for the Shh signaling pathway in depression and the potential crosstalk of Shh with Wnt and BDNF. Antidepressants are known to upregulate the adult hippocampal neurogenesis to treat depression. Shh plays an important role in adult hippocampal neurogenesis, and its downstream signaling components regulate the synthesis of Wnt proteins. Moreover, the expression of Gli1 and Smo is downregulated in depression. BDNF and Wnt signaling are also regulated by various available antidepressants, so there is the possibility that Shh may be involved in the pathophysiology of depression. Therefore, the crosstalk between the Shh, Wnt, and BDNF signaling pathways is being discussed to identify the potential targets. Specifically, the potential role of the Shh signaling pathway in depression is explored as a new target for better therapies for depression.
Collapse
Affiliation(s)
- Mohd Tayyab
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shirin Farheen
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mubeena P M Mariyath
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Nabeela Khanam
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Javier S Castresana
- Department of Biochemistry and Genetics, University of Navarra, Faculty of Sciences, Pamplona, Spain
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India.,Department of Physiology, JNMC, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
43
|
Chen SC, Huang M, He QW, Zhang Y, Opoku EN, Yang H, Jin HJ, Xia YP, Hu B. Administration of sonic hedgehog protein induces angiogenesis and has therapeutic effects after stroke in rats. Neuroscience 2017; 352:285-295. [DOI: 10.1016/j.neuroscience.2017.03.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
|
44
|
Dang HX, Li J, Liu C, Fu Y, Zhou F, Tang L, Li L, Xu F. CGRP attenuates hyperoxia-induced oxidative stress-related injury to alveolar epithelial type II cells via the activation of the Sonic hedgehog pathway. Int J Mol Med 2017; 40:209-216. [PMID: 28560441 DOI: 10.3892/ijmm.2017.3002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/17/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to examine the effect of calcitonin gene-related peptide (CGRP) on primary alveolar epithelial type II (AECII) cells and expression of Sonic hedgehog (SHH) signaling pathway components following exposure to hyperoxia. The AECII cells were isolated and purified from premature rats and exposed to air (21% oxygen), air + CGRP, hyperoxia (95% oxygen) or hyperoxia + CGRP. The production of intracellular reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate molecular probe. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the culture supernatant were detected by spectrophotometry. The apoptosis of AECII cells was assayed by flow cytometry, and the mRNA and protein expression levels of Shh and Ptc1 in the AECII cells were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence, respectively. The cellular pathological changes partly improved and apoptosis was markedly decreased upon treatment with CGRP under hyperoxic conditions. The levels of ROS in the hyperoxia + CGRP group were significantly lower than thoe in the hyperoxia group. In addition, the hyperoxia-induced increase in MDA levels and the decrease in SOD activity in the culture supernatant of the AECII cells were attenuated by CGRP. Compared with the cells exposed to air, hyperoxia markedly inhibited the mRNA and protein expression levels of Shh and Ptc1 in the AECII cells; however, this inhibition was partly attenuated by treatment with CGRP. On the whole, our data suggest that CGRP can partly protect AECII cells from hyperoxia-induced injury, and the upregulation of CGRP may be a potential therapeutic approach with which to combat hyperoxia-induced lung injury, which may be associated with the activation of the SHH signaling pathway.
Collapse
Affiliation(s)
- Hong-Xing Dang
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Jing Li
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Chengjun Liu
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Yueqiang Fu
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Fang Zhou
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Lei Tang
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Long Li
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Feng Xu
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| |
Collapse
|
45
|
Formichi P, Battisti C, De Santi MM, Guazzo R, Tripodi SA, Radi E, Rossi B, Tarquini E, Federico A. Primary cilium alterations and expression changes of Patched1 proteins in niemann-pick type C disease. J Cell Physiol 2017; 233:663-672. [PMID: 28332184 DOI: 10.1002/jcp.25926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 01/07/2023]
Abstract
Niemann-Pick type C disease (NPC) is a disorder characterized by abnormal intracellular accumulation of unesterified cholesterol and glycolipids. Two distinct disease-causing genes have been isolated, NPC1 and NPC2. The NPC1 protein is involved in the sorting and recycling of cholesterol and glycosphingolipids in the late endosomal/lysosomal system. It has extensive homology with the Patched1 (Ptc1) receptor, a transmembrane protein localized in the primary cilium, and involved in the Hedgehog signaling (Shh) pathway. We assessed the presence of NPC1 and Ptc1 proteins and evaluated the relative distribution and morphology of primary cilia in fibroblasts from five NPC1 patients and controls, and in normal fibroblasts treated with 3-ß-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A), a cholesterol transport-inhibiting drug that is widely used to mimic NPC. Immunofluorescence and western blot analyses showed a significant decrease in expression of NPC1 and Ptc1 in NPC1 fibroblasts, while they were normally expressed in U18666A-treated fibroblasts. Moreover, fibroblasts from NPC1 patients and U18666A-treated cells showed a lower percentage distribution of primary cilia and a significant reduction in median cilia length with respect to controls. These are the first results demonstrating altered cytoplasmic expression of Ptc1 and reduced number and length of primary cilia, where Ptc1 is located, in fibroblasts from NPC1 patients. We suggest that the alterations in Ptc1 expression in cells from NPC1 patients are closely related to NPC1 expression deficit, while the primary cilia alterations observed in NPC1 and U18666A-treated fibroblasts may represent a secondary event derived from a defective metabolic pathway.
Collapse
Affiliation(s)
- Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - Elena Radi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Ermelinda Tarquini
- Unit of Clinic Neurology and Neurometabolic Diseases, AOU Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
46
|
Zheng LQ, Chi SM, Li CX. Rab23's genetic structure, function and related diseases: a review. Biosci Rep 2017; 37:BSR20160410. [PMID: 28104793 PMCID: PMC5333778 DOI: 10.1042/bsr20160410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/15/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022] Open
Abstract
Rab23 has been proven to play a role in membrane trafficking and protein transport in eukaryotic cells. Rab23 is also a negative regulator of the Sonic hedgehog (Shh) signaling pathway in an indirect way. The nonsense mutation and loss of protein of Rab23 has been associated with neural tube defect in mice and aberrant expression in various diseases in human such as neural system, breast, visceral, and cutaneous tumor. In addition, Rab23 may play joint roles in autophagosome formation during anti-infection process against Group A streptococcus. In this review, we give a brief review on the functions of Rab23, summarize the involvement of Rab23 in genetic research, membrane trafficking, and potential autophagy pathway, especially focus on tumor promotion, disease pathogenesis, and discuss the possible underlying mechanisms that are regulated by Rab23.
Collapse
Affiliation(s)
- Li-Qiang Zheng
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, the 251st Hospital of Chinese PLA, No.13.Jian'guo Road, Zhangjiakou City, Hebei Province, 075100, China
| | - Su-Min Chi
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Cheng-Xin Li
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
47
|
Li Y, Atkinson K, Zhang T. Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer Lett 2017; 396:103-109. [PMID: 28300634 DOI: 10.1016/j.canlet.2017.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Abstract
The cancer stem cell model claims that the initiation, maintenance, and growth of a tumor are driven by a small population of cancer cells termed cancer stem cells. Cancer stem cells possess a variety of phenotypes associated with therapeutic resistance and often cause recurrence of the diseases. Several strategies have been investigated to target cancer stem cells in a variety of cancers, such as blocking one or more self-renewal signaling pathways, reducing the expression of drug efflux and ATP-binding cassette efflux transporters, modulating epigenetic aberrations, and promoting cancer stem cell differentiation. A number of cell and animal studies strongly support the potential benefits of combining chemotherapeutic drugs with cancer stem cell targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This mini-review provides an updated discussion of these preclinical and clinical studies.
Collapse
Affiliation(s)
- Yanyan Li
- College of Science and Humanities, Husson University, 1 College Circle, Bangor, ME, 04401, USA.
| | - Katharine Atkinson
- College of Science and Humanities, Husson University, 1 College Circle, Bangor, ME, 04401, USA
| | - Tao Zhang
- School of Pharmacy, Husson University, 1 College Circle, Bangor, ME, 04401, USA
| |
Collapse
|
48
|
He P, Zhang HX, Sun CY, Chen CY, Jiang HQ. Overexpression of SASH1 Inhibits the Proliferation, Invasion, and EMT in Hepatocarcinoma Cells. Oncol Res 2017; 24:25-32. [PMID: 27178819 PMCID: PMC7838664 DOI: 10.3727/096504016x14575597858609] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY (SH3 domain containing expressed in lymphocytes) family of signal adapter proteins, has been implicated in tumorigenesis of many types of cancers. However, the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma are largely unknown. In this study, we investigated the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma. Our results showed that SASH1 was lowly expressed in hepatocarcinoma cell lines. The in vitro experiments showed that overexpression of SASH1 inhibited the proliferation and migration/invasion of hepatocarcinoma cells, as well as the epithelial-mesenchymal transition (EMT) progress. Furthermore, overexpression of SASH1 suppressed the expression of Shh as well as Smo, Ptc, and Gli-1 in hepatocarcinoma cells. Taken together, these results suggest that overexpression of SASH1 inhibited the proliferation and invasion of hepatocarcinoma cells through the inactivation of Shh signaling pathway. Therefore, these findings reveal that SASH1 may be a potential therapeutic target for the treatment of hepatocarcinoma.
Collapse
Affiliation(s)
- Ping He
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
49
|
Farahmand L, Darvishi B, Majidzadeh‐A K, Madjid Ansari A. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on Hedgehog and WNT/β-catenin signalling pathways. Cell Prolif 2017; 50:e12299. [PMID: 27669681 PMCID: PMC6529111 DOI: 10.1111/cpr.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022] Open
Abstract
Despite numerous remarkable achievements in the field of anti-cancer therapy, tumour relapse and metastasis still remain major obstacles in improvement of overall cancer survival, which may be at least partially owing to epithelial-mesenchymal transition (EMT). Multiple signalling pathways have been identified in EMT; however, it appears that the role of the Hedgehog and WNT/β-catenin pathways are more prominent than others. These are well-known preserved intracellular regulatory pathways of different cellular functions including proliferation, survival, adhesion and differentiation. Over the last few decades, several naturally occurring compounds have been identified to significantly obstruct several intermediates in Hedgehog and WNT/β-catenin signalling, eventually resulting in suppression of signal transduction. This article highlights the current state of knowledge associated with Hedgehog and WNT/β-catenin, their involvement in metastasis through EMT processes and introduction of the most potent naturally occurring agents with capability of suppressing them, eventually overcoming tumour relapse, invasion and metastasis.
Collapse
Affiliation(s)
- L. Farahmand
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
| | - B. Darvishi
- Recombinant Proteins DepartmentBreast Cancer Research CenterACECRTehranIran
| | - K. Majidzadeh‐A
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
- Tasnim Biotechnology Research Center (TBRC)school of medicineAJA University of Medical SciencesTehranIran
| | - A. Madjid Ansari
- Cancer Alternative and Complementary Medicine DepartmentBreast Cancer Research CenterACECRTehranIran
| |
Collapse
|
50
|
Hui Z, Sha DJ, Wang SL, Li CS, Qian J, Wang JQ, Zhao Y, Zhang JH, Cheng HY, Yang H, Yu LJ, Xu Y. Panaxatriol saponins promotes angiogenesis and enhances cerebral perfusion after ischemic stroke in rats. Altern Ther Health Med 2017; 17:70. [PMID: 28114983 PMCID: PMC5259846 DOI: 10.1186/s12906-017-1579-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
Background Panaxatriol saponins (PTS), an extract from the traditional Chinese herb Panax notoginseng, which has been used to treat ischemic stroke for many years in China. However, the mechanism underlying the effects of PTS remains unclear. This study aimed to determine whether PTS can protect against ischemic brain injury by promoting angiogenesis and to explore the possible mechanism by which it promotes angiogenesis. Methods Middle cerebral artery occlusion (MCAO) was induced in rats, and neurological deficit scores and brain infarct volumes were assessed. Micro-Positron emission tomography (PET) was adopted to assess cerebral perfusion, and real-time PCR and western blotting were used to evaluate vascular growth factor and Sonic hedgehog (Shh) pathway component levels. Immunofluorescence staining was used to determine capillary densities in ischemic penumbrae. Results We showed that PTS improved neurological function and reduced infarct volumes in MCAO rats. Micro-PET indicated that PTS can significantly increase 18F-fluorodeoxyglucose (18F-PDG) uptake by ischemic brain tissue and enhance cerebral perfusion after MCAO surgery. Moreover, PTS was able to increase capillary densities and enhance angiogenesis in ischemic boundary zones and up-regulate vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1) expression by activating the Shh signaling pathway. Conclusion These findings indicate that PTS exerts protective effects against cerebral ischemic injury by enhancing angiogenesis and improving microperfusion. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1579-5) contains supplementary material, which is available to authorized users.
Collapse
|