1
|
Colegrove HL, Monnat RJ, Feder AF. Epithelial competition determines gene therapy potential to suppress Fanconi Anemia oral cancer risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640284. [PMID: 40060430 PMCID: PMC11888451 DOI: 10.1101/2025.02.26.640284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Fanconi Anemia (FA) is a heritable syndrome characterized by DNA damage repair deficits, frequent malformations and a significantly elevated risk of bone marrow failure, leukemia, and mucosal head and neck squamous cell carcinomas (HNSCC). Hematopoietic stem cell gene therapy can prevent marrow failure and lower leukemia risk, but mucosal gene therapy to lower HNSCC risk remains untested. Major knowledge gaps include an incomplete understanding of how rapidly gene-corrected cellular lineages could spread through the oral epithelium, and which delivery parameters are critical for ensuring efficient gene correction. To answer these questions, we extended an agent-based model of the oral epithelium to include the delivery of gene correction in situ to FA cells and the competitive dynamics between cellular lineages with and without gene correction. We found that only gene-corrected lineages with substantial proliferative advantages (probability of resisting displacement out of the basal layer ≥ 0.1) could spread on clinically relevant timelines, and that these lineages were initially at high risk of loss in the generations following correction. Delivering gene correction to many cells minimizes the risk of loss, while delivery to many distinct locations within a tissue maximizes the rate of spread. To determine the impact of mucosal gene therapy in preventing the clonal expansion of pre-cancerous mutations, we compared the expected burden of T P 53 mutations in simulated tissue sections with and without gene correction. We found that when FA cells have elevated genome instability or a T P 53 -dependent proliferative advantage, gene correction can substantially reduce the accumulation of pro-tumorigenic mutations. This model illustrates the power of computational frameworks to identify critical determinants of therapeutic success to enable experimental optimization and support novel and effective gene therapy applications.
Collapse
Affiliation(s)
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA
- Herbold Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
| |
Collapse
|
2
|
Elevated somatic mutation and evidence of genomic instability in veterans with Gulf War illness. Life Sci 2021; 281:119746. [PMID: 34181965 DOI: 10.1016/j.lfs.2021.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022]
Abstract
AIMS Gulf War illness (GWI) is thought to be associated with exposures experienced by soldiers deployed in the 1991 Gulf War. A major question is how these exposures continue to influence the health of these individuals three decades later. One potentially permanent effect of such exposures is the induction of genetic mutations. We investigated whether veterans with GWI exhibited persistently elevated levels of somatic mutation. MATERIALS AND METHODS We applied the blood-based glycophorin A (GPA) somatic mutation assay to a cohort of veterans diagnosed with GWI and a set of both concurrent and historic age-matched controls. This assay quantifies red blood cells with a phenotype consistent with loss of one allele at the genetic determinant for the MN blood group, the GPA gene. KEY FINDINGS As a population, those affected with GWI exhibited an uninduced mutation frequency at the GPA locus that was effectively twice that observed in controls, a result that was statistically significant. This result was influenced by an increase in the incidence of individuals with aberrantly high mutation frequencies, seemingly higher than would be expected by dose extrapolation and consistent with the induction of localized genomic instability in the hematopoietic bone marrow stem cells. When these "outliers" were removed from consideration, the remaining affected population retained a significantly higher mean allele loss mutation frequency, suggesting that both dose-dependent bone marrow genotoxicity and induction of genomic instability are contributing to the elevation in mutation frequency in these affected veterans. SIGNIFICANCE This study provides evidence that manifestation of GWI is associated with increased cumulative exposure to agents capable of inducing persistent mutations in bone marrow stem cells. Whether these mutations are involved in the clinical aspects of the condition or are simply biomarkers of overall exposure has yet to be determined. The increased incidence of genomic instability suggests that this persistent mutation can have important delayed effects on cellular integrity.
Collapse
|
3
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
4
|
Myers NT, Grant SG. The blood-based glycophorin A (GPA) human in vivo somatic mutation assay. Methods Mol Biol 2014; 1105:223-244. [PMID: 24623232 DOI: 10.1007/978-1-62703-739-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The glycophorin A assay concurrently detects and quantifies erythrocytes with allele-loss phenotypes at the autosomal locus responsible for the polymorphic MN blood group. It uses a pair of allele-specific monoclonal antibodies and flow cytometry to efficiently analyze a standard population of five million cells. Two distinct variant phenotypes are detected: simple allele loss and allele loss followed by reduplication of the remaining allele; both are consistent with the mechanisms underlying "loss of heterozygosity" at tumor-suppressor genes. The assay is an intermediate biomarker of biological effect in the somatic mutational model of human cancer and has been applied to populations with a known or suspected genotoxic exposure, to patients with hereditary syndromes causing predisposition to cancer (where the assay has been applied diagnostically), and to patients manifesting cancer as a disease endpoint.
Collapse
Affiliation(s)
- Nicole T Myers
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | |
Collapse
|
5
|
Abstract
Interstrand crosslinks covalently link complementary DNA strands, block replication and transcription, and can trigger cell death. In eukaryotic systems several pathways, including the Fanconi Anemia pathway, are involved in repairing interstrand crosslinks, but their precise mechanisms remain enigmatic. The lack of functional homologs in simpler model organisms has significantly hampered progress in this field. Two recent studies have finally identified a Fanconi-like interstrand crosslink repair pathway in yeast. Future studies in this simplistic model organism promise to greatly improve our basic understanding of complex interstrand crosslink repair pathways like the Fanconi pathway.
Collapse
|
6
|
Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 2012; 287:26563-75. [PMID: 22696213 DOI: 10.1074/jbc.m112.369918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.
Collapse
Affiliation(s)
- Danielle L Daee
- Genome Instability Section, Genetics, and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci U S A 2010; 107:21725-30. [PMID: 21118987 DOI: 10.1073/pnas.0914772107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The molecular etiology of breast cancer has proven to be remarkably complex. Most individual oncogenes are disregulated in only approximately 30% of breast tumors, indicating that either very few molecular alterations are common to the majority of breast cancers, or that they have not yet been identified. In striking contrast, we now show that 19 of 19 stage I breast tumors tested with the functional unscheduled DNA synthesis assay exhibited a significant deficiency of DNA nucleotide excision repair (NER) capacity relative to normal epithelial tissue from disease-free controls (n = 23). Loss of DNA repair capacity, including the complex, damage-comprehensive NER pathway, results in genomic instability, a hallmark of carcinogenesis. By microarray analysis, mRNA expression levels for 20 canonical NER genes were reduced in representative tumor samples versus normal. Significant reductions were observed in 19 of these genes analyzed by the more sensitive method of RNase protection. These results were confirmed at the protein level for five NER gene products. Taken together, these data suggest that NER deficiency may play an important role in the etiology of sporadic breast cancer, and that early-stage breast cancer may be intrinsically susceptible to genotoxic chemotherapeutic agents, such as cis-platinum, whose damage is remediated by NER. In addition, reduced NER capacity, or reduced expression of NER genes, could provide a basis for the development of biomarkers for the identification of tumorigenic breast epithelium.
Collapse
|
8
|
Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54-72. [PMID: 19622404 PMCID: PMC2714807 DOI: 10.1016/j.mrfmmm.2009.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/20/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
Abstract
The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| | | |
Collapse
|
9
|
Grant SG, Das R, Cerceo CM, Rubinstein WS, Latimer JJ. Elevated levels of somatic mutation in a manifesting BRCA1 mutation carrier. Pathol Oncol Res 2007; 13:276-83. [PMID: 18158561 DOI: 10.1007/bf02940305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 09/21/2007] [Indexed: 01/23/2023]
Abstract
Homozygous loss of activity at the breast cancerpredisposing genes BRCA1 and BRCA2 (FANCD1) confers increased susceptibility to DNA double strand breaks, but this genotype occurs only in the tumor itself, following loss of heterozygosity at one of these loci. Thus, if these genes play a role in tumor etiology as opposed to tumor progression, they must manifest a heterozygous phenotype at the cellular level. To investigate the potential consequences of somatic heterozygosity for a BRCA1 mutation demonstrably associated with breast carcinogenesis on background somatic mutational burden, we applied the two standard assays of in vivo human somatic mutation to blood samples from a manifesting carrier of the Q1200X mutation in BRCA1 whose tumor was uniquely ascertained through an MRI screening study. The patient had an allele-loss mutation frequency of 19.4 x 10(-6) at the autosomal GPA locus in erythrocytes and 17.1 x 10(-6) at the X-linked HPRT locus in lymphocytes. Both of these mutation frequencies are significantly higher than expected from age-matched disease-free controls (P < 0.05). Mutation at the HPRT locus was similarly elevated in lymphoblastoid cell lines established from three other BRCA1 mutation carriers with breast cancer. Our patient's GPA mutation frequency is below the level established for diagnosis of homozygous Fanconi anemia patients, but consistent with data from obligate heterozygotes. The increased HPRT mutation frequency is more reminiscent of data from patients with xeroderma pigmentosum, a disease characterized by UV sensitivity and deficiency in the nucleotide excision pathway of DNA repair. Therefore, this BRCA1-associated breast cancer patient manifests a unique phenotype of increased background mutagenesis that likely contributed to the development of her disease independent of loss of heterozygosity at the susceptibility locus.
Collapse
Affiliation(s)
- Stephen G Grant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | | | | | | | | |
Collapse
|
10
|
Hinz JM, Nham PB, Urbin SS, Jones IM, Thompson LH. Disparate contributions of the Fanconi anemia pathway and homologous recombination in preventing spontaneous mutagenesis. Nucleic Acids Res 2007; 35:3733-40. [PMID: 17517774 PMCID: PMC1920256 DOI: 10.1093/nar/gkm315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder in which DNA-damage processing defects are reported for translesion synthesis (TLS), non-homologous end joining (NHEJ) and homologous recombination (HR; both increased and decreased). To reconcile these diverse findings, we compared spontaneous mutagenesis in FA and HR mutants of hamster CHO cells. In the fancg mutant we find a reduced mutation rate accompanied by an increased proportion of deletions within the hprt gene. Moreover, in fancg cells gene amplification at the CAD and dhfr loci is elevated, another manifestation of inappropriate processing of damage during DNA replication. In contrast, the rad51d HR mutant has a greatly elevated rate of hprt mutations, >85% of which are deletions. Our analysis supports the concept that HR faithfully restores broken replication forks, whereas the FA pathway acts more globally to ensure chromosome stability by promoting efficient end joining of replication-derived breaks, as well as TLS and HR.
Collapse
Affiliation(s)
- John M Hinz
- Chemistry, Materials, & Life Sciences Directorate, L441, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | | | | | | | |
Collapse
|
11
|
Hinz JM, Nham PB, Salazar EP, Thompson LH. The Fanconi anemia pathway limits the severity of mutagenesis. DNA Repair (Amst) 2006; 5:875-84. [PMID: 16815103 DOI: 10.1016/j.dnarep.2006.05.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 12/13/2022]
Abstract
Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.
Collapse
Affiliation(s)
- John M Hinz
- Biosciences Directorate, L441, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | |
Collapse
|