1
|
Imaizumi T, Yamamoto-Shimojima K, Yanagishita T, Ondo Y, Nishi E, Okamoto N, Yamamoto T. Complex chromosomal rearrangements of human chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Hum Genet 2020; 139:1555-1563. [PMID: 32535809 DOI: 10.1007/s00439-020-02196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/06/2020] [Indexed: 01/16/2023]
Abstract
The chromosomal region critical in Down syndrome has long been analyzed through genotype-phenotype correlation studies using data from many patients with partial trisomy 21. Owing to that, a relatively small region of human chromosome 21 (35.9 ~ 38.0 Mb) has been considered as Down syndrome critical region (DSCR). In this study, microarray-based comparative genomic hybridization analysis identified complex rearrangements of chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Although the patient did not show up-slanting palpebral fissures and single transverse palmar creases, other symptoms were consistent with Down syndrome. Rearrangements were analyzed by whole-genome sequencing using Nanopore long-read sequencing. The analysis revealed that chromosome 21 was fragmented into seven segments and reassembled by six connected points. Among 12 breakpoints, 5 are located within the short region and overlapped with repeated segments. The rearrangement resulted in a maximum gain of five copies, but no region showed loss of genomic copy numbers. Breakpoint-junctions showed no homologous region. Based on these findings, chromoanasynthesis was considered as the mechanism. Although the distal 21q22.13 region was not included in the aberrant regions, some of the genes located on the duplicated regions, SOD1, SON, ITSN1, RCAN1, and RUNX1, were considered as possible candidate genes for clinical features of the patient. We discussed the critical region for Down syndrome, with the literature review.
Collapse
Affiliation(s)
- Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keiko Yamamoto-Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Japan Society for the Promotion of Science (RPD), Tokyo, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yumiko Ondo
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan.
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
2
|
Takahashi T, Inoue A, Yoshimoto J, Kanamitsu K, Taki T, Imada M, Yamada M, Ninomiya S, Toki T, Terui K, Ito E, Shimada A. Transient myeloproliferative disorder with partial trisomy 21. Pediatr Blood Cancer 2015; 62:2021-4. [PMID: 26138905 DOI: 10.1002/pbc.25624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/15/2015] [Indexed: 11/08/2022]
Abstract
Myeloid malignancy with Down syndrome (ML-DS) is estimated to have a step-wise leukemogenesis including GATA1 mutation. Trisomy 21 is essential for ML-DS; however, we do not know exactly which gene or genes located on chromosome 21 are necessary for the ML-DS. We report a female infant with transient myeloproliferative disorder (TMD) and partial trisomy 21. SNP array analysis showed 10 Mb amplification of 21q22.12-21q22.3, which included DYRK1A, ERG, and ETS but not the RUNX1 gene. With two other reported TMD cases having partial trisomy 21, DYRK1A, ERG, and ETS were the most likely genes involved in collaboration with the GATA1 mutation.
Collapse
Affiliation(s)
- Takahide Takahashi
- Division of Medical Support, Okayama University Hospital, Okayama, Japan
| | - Akira Inoue
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junko Yoshimoto
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | | | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Imada
- Division of Medical Support, Okayama University Hospital, Okayama, Japan
| | - Mutsuko Yamada
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Shinsuke Ninomiya
- Department of Clinical Genetics, Kurashiki Central Hospital, Kurashiki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akira Shimada
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
3
|
Dutta UR, Hansmann I, Schlote D. Molecular cytogenetic characterization of a familial pericentric inversion 3 associated with short stature. Eur J Med Genet 2015; 58:154-9. [PMID: 25595572 DOI: 10.1016/j.ejmg.2015.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022]
Abstract
Short stature refers to the height of an individual which is below expected. The causes are heterogenous and influenced by several genetic and environmental factors. Chromosomal abnormalities are a major cause of diseases and cytogenetic mapping is one of the powerful tools for the identification of novel disease genes. Here we report a three generation family with a heterozygous pericentric inversion of 46, XX, inv(3) (p24.1q26.1) associated with Short stature. Positional cloning strategy was used to physically map the breakpoint regions by Fluorescence in situ hybridization (FISH). Fine mapping was performed with Bacterial Artificial Chromosome (BAC) clones spanning the breakpoint regions. In order to further characterize the breakpoint regions extensive molecular mapping was carried out with the breakpoint spanning BACs which narrowed down the breakpoint region to 2.9 kb and 5.3 kb regions on p and q arm respectively. Although these breakpoints did not disrupt any validated genes, we had identified a novel putative gene in the vicinity of 3q26.1 breakpoint region by in silico analysis. Trying to find the presence of any transcripts of this putative gene we analyzed human total RNA by RT-PCR and identified transcripts containing three new exons confirming the existence of a so far unknown gene close to the 3q breakpoint.
Collapse
Affiliation(s)
- Usha R Dutta
- Institut fuer Humangenetik, Martin Luther University, Halle-Wittenberg, Halle (Saale) 06097, Germany; Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500 001, India.
| | - Ingo Hansmann
- Institut fuer Humangenetik, Martin Luther University, Halle-Wittenberg, Halle (Saale) 06097, Germany
| | - Dietmar Schlote
- Institut fuer Humangenetik, Martin Luther University, Halle-Wittenberg, Halle (Saale) 06097, Germany
| |
Collapse
|
4
|
Melis D, Genesio R, Cappuccio G, MariaGinocchio V, Casa RD, Menna G, Buffardi S, Poggi V, Leszle A, Imperati F, Carella M, Izzo A, Del Giudice E, Nitsch L, Andria G. Mental retardation, congenital heart malformation, and myelodysplasia in a patient with a complex chromosomal rearrangement involving the critical region 21q22. Am J Med Genet A 2011; 155A:1697-705. [DOI: 10.1002/ajmg.a.33976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/03/2011] [Indexed: 11/08/2022]
|
5
|
Villa N, Bentivegna A, Ertel A, Redaelli S, Colombo C, Nacinovich R, Broggi F, Lissoni S, Bungaro S, Addya S, Fortina P, Dalprà L. A de novo supernumerary genomic discontinuous ring chromosome 21 in a child with mild intellectual disability. Am J Med Genet A 2011; 155A:1425-31. [PMID: 21574245 DOI: 10.1002/ajmg.a.34010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/17/2011] [Indexed: 11/10/2022]
Abstract
Small supernumerary marker chromosomes (sSMCs) are structurally abnormal extra chromosomes that cannot be unambiguously identified or characterized by conventional banding techniques alone, and they are generally equal in size or smaller than chromosome 20 of the same metaphase spread. Small supernumerary ring chromosomes (sSRCs), a smaller class of marker chromosomes, comprise about 10% of the cases. For various reasons these marker chromosomes have been the most difficult to characterize; although specific syndromes have not yet been defined, 60% of cases are associated with an abnormal phenotype. The chromosomal material involved, the degree and tissutal distribution of mosaicism, and the possible presence of uniparental disomy, are the important factors determining whether or not the ring chromosome will give rise to symptoms. Using conventional and molecular cytogenetics approaches we identified a de novo chromosome 21 sSRC in a child with speech delay and mild intellectual disability. By using aCGH analysis and SNP arrays, we report the presence of two discontinuous regions of chromosome 21 and the paternal origin of the sSRC. A thorough neuropsychiatric evaluation is also provided. Only few other cases of complex discontinuous ring chromosomes have been described in detail.
Collapse
Affiliation(s)
- Nicoletta Villa
- Medical Genetics Laboratory, S. Gerardo Hospital, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Vaglio A, Milunsky A, Quadrelli A, Huang XL, Maher T, Mechoso B, Martínez S, Pagano S, Bellini S, Costabel M, Quadrelli R. Clinical, cytogenetic, and molecular characterization of a girl with some clinical features of Down syndrome resulting from a pure partial trisomy 21q22.11-qter due to a de novo intrachromosomal duplication. Genet Test Mol Biomarkers 2010; 14:57-65. [PMID: 20143912 DOI: 10.1089/gtmb.2009.0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a girl with a de novo pure partial trisomy 21 with some clinical features of Down syndrome. The girl patient presented a flat broad face, brachycephaly, and a flat nasal bridge. She also had upwardly slanted palpebral fissures, epicanthal folds, blepharitis, brushfield spots, and strabismus. Her mouth was wide with downturned corners, prominent lower lip, narrow and furrowed tongue, and short palate. G-banded chromosomal analysis of metaphases in cells from both skin and blood showed a 46,XX karyotype with additional chromosomal material on the distal short arm of one chromosome 21. Parental chromosomes were normal. Molecular analyses with the short-tandem-repeat (STR) marker D21S2039 (interferon-alpha/beta receptor [IFNAR]) (21q22.1) showed a triallelic pattern. Subtelomeric fluorescent in situ hybridization (FISH) analyses, LSI 13 (retinoblastoma 1 [RB1])/LSI 21(21q22.13-q22.2), and whole chromosome painting probes specific for chromosome 21 showed trisomy for the segment 21q22.13-21q22.2 due to a de novo intrachromosomal duplication. A 500K SNP microarray analysis was then performed and revealed a 13-Mb duplication of 21q22.11-qter. This duplicated material had been translocated onto the end of the "p" arm of one of the chromosome 21s. The karyotype was provisionally defined as 46,XX,add(21)(p12).ish der (21)t(21;21)(p12;q22.11)(WCP21q+,PCP21q++,D215259/D21S341/D21S342++)dn. At the age of 4 years and 10 months, a comprehensive psychological examination was performed and the diagnostic criteria for mental retardation were not fulfilled. In comparison with previously published cases of pure partial trisomy 21, this is a rare finding. Additional studies of such rare patients should aid in the study of the pathogenesis of Down syndrome.
Collapse
Affiliation(s)
- Alicia Vaglio
- Institute of Medical Genetics, Hospital Italiano, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ronan A, Fagan K, Christie L, Conroy J, Nowak NJ, Turner G. Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region. BMJ Case Rep 2009; 2009:bcr05.2009.1914. [PMID: 21686961 DOI: 10.1136/bcr.05.2009.1914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 4.3 Mb duplication of chromosome 21 bands q22.13-q22.2 was diagnosed by interphase fluorescent in situ hybridisation (FISH) in a 31 week gestational age baby with cystic hygroma and hydrops; the duplication was later found in the mother and in her 8-year-old daughter. All had the facial gestalt of Down syndrome (DS). This is the smallest accurately defined duplication of chromosome 21 reported with a DS phenotype. The duplication encompasses the gene DYRK1 but not DSCR1 or DSCAM. Previous karyotype analysis and telomere screening of the mother, and karyotype analysis and metaphase FISH of a chorionic villus sample, had all failed to reveal the duplication. The findings in this family add to the identification and delineation of a "critical region" for the DS phenotype on chromosome 21.
Collapse
Affiliation(s)
- Anne Ronan
- Hunter Genetics Unit, Waratah, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Lyle R, Béna F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L, Doco-Fenzy M, Cornillet-Lefèbvre P, Pelet A, Lyonnet S, Toutain A, Colleaux L, Horst J, Kennerknecht I, Wakamatsu N, Descartes M, Franklin JC, Florentin-Arar L, Kitsiou S, Aït Yahya-Graison E, Costantine M, Sinet PM, Delabar JM, Antonarakis SE. Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 2008; 17:454-66. [PMID: 19002211 DOI: 10.1038/ejhg.2008.214] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype-phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within approximately 85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.
Collapse
Affiliation(s)
- Robert Lyle
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ronan A, Fagan K, Christie L, Conroy J, Nowak NJ, Turner G. Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region. J Med Genet 2007; 44:448-51. [PMID: 17237124 PMCID: PMC2598003 DOI: 10.1136/jmg.2006.047373] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 11/04/2022]
Abstract
A 4.3 Mb duplication of chromosome 21 bands q22.13-q22.2 was diagnosed by interphase fluorescent in-situ hybridisation (FISH) in a 31-week gestational age baby with cystic hygroma and hydrops; the duplication was later found in the mother and in her 8-year-old daughter by the same method and confirmed by array comparative genomic hybridisation (aCGH). All had the facial gestalt of Down syndrome (DS). This is the smallest accurately defined duplication of chromosome 21 reported with a DS phenotype. The duplication encompasses the gene DYRK1 but not DSCR1 or DSCAM, all of which have previously been implicated in the causation of DS. Previous karyotype analysis and telomere screening of the mother, and karyotype analysis and metaphase FISH of a chorionic villus sample, had all failed to reveal the duplication. The findings in this family add to the identification and delineation of a "critical region" for the DS phenotype on chromosome 21. Cryptic chromosomal abnormalities can be missed on a routine karyotype for investigation of abnormal prenatal ultrasound findings, lending support to the use of aCGH analysis in this setting.
Collapse
|
10
|
Aguinaga M, Razo G, Castro J, Mayén-Molina DG. Prenatal diagnosis of trisomy 21 without the Down syndrome phenotype. Prenat Diagn 2007; 26:1168-71. [PMID: 17042031 DOI: 10.1002/pd.1583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To report a patient with the prenatal diagnosis of trisomy 21 without the clinical Down syndrome (DS) phenotype secondary to the absence of the Down syndrome chromosomal region (DSCR) in a derivative chromosome 21. CASE REPORT AND METHODS A newborn patient with prenatal diagnosis of duodenal atresia. Cytogenetic studies revealed a regular trisomy 21. At birth, she did not present the clinical features of DS. FISH analysis was performed in the patient with the LSI spectrum probe for the DSCR and in the mother with FISH multicolor analysis using painting probes for chromosomes 20 and 21. RESULTS FISH analysis in the patient showed two hybridization signals suggesting that the third chromosome 21 did not have the DSCR region explaining the absence of the DS phenotype. FISH multicolor analysis in the mother showed three hybridization signals for chromosomes 20 and 21, concluding a maternal karyotype, 46,XX,t(20;21)(p11.2;q22.1). CONCLUSIONS The patient was found to have a derivative chromosome 21 secondary to a nondisjunction error in meiosis II without the DS critical region and the phenotype was mostly secondary to the combination of the two partial trisomies.
Collapse
Affiliation(s)
- M Aguinaga
- Genetics Department, Instituto Nacional de Perinatología, México City.
| | | | | | | |
Collapse
|
11
|
Sato D, Kawara H, Shimokawa O, Harada N, Tonoki H, Takahashi N, Imai Y, Kimura H, Matsumoto N, Ariga T, Niikawa N, Yoshiura KI. A girl with Down syndrome and partial trisomy for 21pter-q22.13: A clue to narrow the Down syndrome critical region. Am J Med Genet A 2007; 146A:124-7. [PMID: 18074380 DOI: 10.1002/ajmg.a.31974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daisuke Sato
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|