1
|
Qian X, Zhang H, Xiang C. Recombinant human growth hormone in the treatment of C.836A/G-caused short stature in a girl: a case report and literature review. Transl Pediatr 2022; 11:774-780. [PMID: 35685070 PMCID: PMC9173874 DOI: 10.21037/tp-22-174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND When we treated the C.836A/G-caused short stature girls with rhGH (recombinant growth hormone) for short stature, the effect of height improvement was good, but in the course of treatment, there was a side effect of leukopenia, which led to the interruption of treatment. We consult the literature, did not find such relevant reports, therefore, the objective of this study is to share the novel treatment method of C.836A/G-caused short stature and report the treatment response and adverse events of the child with C.836A/G-caused short stature. CASE DESCRIPTION The clinical data of 1 child with C.836A/G-caused short stature were collected, and the efficacy of rhGH in the treatment of this child was observed. The female child aged 5 years and 5 months old was treated at our hospital for growth retardation of >5 years. The child was a slightly picky eater, had good sleep quality (she often fell asleep after 21:00), and did not exercise much before the age of 3-4 years. Routine blood results and other relevant indicators were also monitored during the treatment. The growth rate of the child was followed up over a period of 16 months using needle withdrawal, and routine blood examinations were conducted regularly. With the application of rhGH, the child with C.836A/G-caused short stature gained 9.6 cm in height at 11 months, and had a height of standard deviation score of -1.01. Throughout the treatment, the blood hemoglobin and platelets of the child were normal, but the content of the granulocytes was lower than the normal value. Some 16 months after the discontinuation of the rhGH therapy, the granulocytes gradually returned to the normal range, but the growth rate of the child declined obviously. CONCLUSIONS Recombinant growth hormone treatment of this case of C.836A/G-caused short stature is effective, but in the course of treatment, we need to pay attention to the side effects of the hematological system. Due to our limited clinical experience with these cases, please correct us for any inaccuracies.
Collapse
Affiliation(s)
- Xiaoxia Qian
- Department of Pediatrics, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Huangping Zhang
- Department of Pediatrics, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Caixia Xiang
- Department of Pediatrics, Shengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| |
Collapse
|
2
|
Liu L, Sun L, Chen Y, Wang M, Yu C, Huang Y, Zhao S, Du H, Chen S, Fan X, Tian W, Wu Z, Qiu G, Zhang TJ, Wu N. Delineation of dual molecular diagnosis in patients with skeletal deformity. Orphanet J Rare Dis 2022; 17:139. [PMID: 35346302 PMCID: PMC8962553 DOI: 10.1186/s13023-022-02293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal deformity is characterized by an abnormal anatomical structure of bone and cartilage. In our previous studies, we have found that a substantial proportion of patients with skeletal deformity could be explained by monogenic disorders. More recently, complex phenotypes caused by more than one genetic defect (i.e., dual molecular diagnosis) have also been reported in skeletal deformities and may complicate the diagnostic odyssey of patients. In this study, we report the molecular and phenotypic characteristics of patients with dual molecular diagnosis and variable skeletal deformities. Results From 1108 patients who underwent exome sequencing, we identified eight probands with dual molecular diagnosis and variable skeletal deformities. All eight patients had dual diagnosis consisting of two autosomal dominant diseases. A total of 16 variants in 12 genes were identified, 5 of which were of de novo origin. Patients with dual molecular diagnosis presented blended phenotypes of two genetic diseases. Mendelian disorders occurred more than once include Osteogenesis Imperfecta Type I (COL1A1, MIM:166200), Neurofibromatosis, Type I (NF1, MIM:162200) and Marfan Syndrome (FBN1, MIM:154700). Conclusions This study demonstrated the complicated skeletal phenotypes associated with dual molecular diagnosis. Exome sequencing represents a powerful tool to detect such complex conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02293-x.
Collapse
Affiliation(s)
- Lian Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yujun Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Muchuan Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chenxi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated To Shandong First Medical University, Shandong, 250021, China
| | - Yingzhao Huang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huakang Du
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shaoke Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xin Fan
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Wen Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
3
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
5
|
Martinelli S, Stellacci E, Pannone L, D'Agostino D, Consoli F, Lissewski C, Silvano M, Cencelli G, Lepri F, Maitz S, Pauli S, Rauch A, Zampino G, Selicorni A, Melançon S, Digilio MC, Gelb BD, De Luca A, Dallapiccola B, Zenker M, Tartaglia M. Molecular Diversity and Associated Phenotypic Spectrum of Germline CBL Mutations. Hum Mutat 2015; 36:787-96. [PMID: 25952305 DOI: 10.1002/humu.22809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/30/2015] [Indexed: 01/11/2023]
Abstract
Noonan syndrome (NS) is a relatively common developmental disorder with a pleomorphic phenotype. Mutations causing NS alter genes encoding proteins involved in the RAS-MAPK pathway. We and others identified Casitas B-lineage lymphoma proto-oncogene (CBL), which encodes an E3-ubiquitin ligase acting as a tumor suppressor in myeloid malignancies, as a disease gene underlying a condition clinically related to NS. Here, we further explored the spectrum of germline CBL mutations and their associated phenotype. CBL mutation scanning performed on 349 affected subjects with features overlapping NS and no mutation in NS genes allowed the identification of five different variants with pathological significance. Among them, two splice-site changes, one in-frame deletion, and one missense mutation affected the RING domain and/or the adjacent linker region, overlapping cancer-associated defects. A novel nonsense mutation generating a v-Cbl-like protein able to enhance signal flow through RAS was also identified. Genotype-phenotype correlation analysis performed on available records indicated that germline CBL mutations cause a variable phenotype characterized by a relatively high frequency of neurological features, predisposition to juvenile myelomonocytic leukemia, and low prevalence of cardiac defects, reduced growth, and cryptorchidism. Finally, we excluded a major contribution of two additional members of the CBL family, CBLB and CBLC, to NS and related disorders.
Collapse
Affiliation(s)
- Simone Martinelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Stellacci
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pannone
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy.,Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Daniela D'Agostino
- Department of Medical Genetics, McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Federica Consoli
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy.,Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza, Rome, Italy
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marianna Silvano
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Cencelli
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | - Silvia Maitz
- Dipartimento di Pediatria, Genetica Clinica, Ospedale S. Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Silke Pauli
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Selicorni
- Dipartimento di Pediatria, Genetica Clinica, Ospedale S. Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Serge Melançon
- Department of Medical Genetics, McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Alessandro De Luca
- Laboratorio Mendel, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza, Rome, Italy
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V, Williams BJ, Dentici ML, Caputo V, Venanzi S, Bonaguro M, Kavamura I, Faienza MF, Pilotta A, Stanzial F, Faravelli F, Gabrielli O, Marino B, Neri G, Silengo MC, Ferrero GB, Torrrente I, Selicorni A, Mazzanti L, Digilio MC, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 2011; 32:760-72. [PMID: 21387466 PMCID: PMC3118925 DOI: 10.1002/humu.21492] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/23/2011] [Indexed: 01/03/2023]
Abstract
Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is caused by aberrant RAS-MAPK signaling and is genetically heterogeneous, which explains, in part, the marked clinical variability documented for this Mendelian trait. Recently, we and others identified SOS1 as a major gene underlying NS. Here, we explored further the spectrum of SOS1 mutations and their associated phenotypic features. Mutation scanning of the entire SOS1 coding sequence allowed the identification of 33 different variants deemed to be of pathological significance, including 16 novel missense changes and in-frame indels. Various mutation clusters destabilizing or altering orientation of regions of the protein predicted to contribute structurally to the maintenance of autoinhibition were identified. Two previously unappreciated clusters predicted to enhance SOS1's recruitment to the plasma membrane, thus promoting a spatial reorientation of domains contributing to inhibition, were also recognized. Genotype–phenotype analysis confirmed our previous observations, establishing a high frequency of ectodermal anomalies and a low prevalence of cognitive impairment and reduced growth. Finally, mutation analysis performed on cohorts of individuals with nonsyndromic pulmonic stenosis, atrial septal defects, and ventricular septal defects excluded a major contribution of germline SOS1 lesions to the isolated occurrence of these cardiac anomalies. Hum Mutat 32:760–772, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Francesca Lepri
- IRCCS Casa Sollievo della Sofferenza, Laboratorio Mendel, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|