1
|
Alfadhel M, Alhubayshi BS, Umair M, Alfaidi A, Alwadaani D, Aloyouni E, Abbas S, Abdulrahman AA, Aldrees M, Tuwaijri AA, Alharithy RS, Alajlan A, Alswaid A, Almohrij S, Al-Khenaizan S. Truncated SPAG9 as a novel candidate gene for a new syndrome: Coarse facial features, albinism, cataract and developmental delay (CACD syndrome). Genet Mol Biol 2025; 48:e20240094. [PMID: 39846792 PMCID: PMC11773325 DOI: 10.1590/1678-4685-gmb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025] Open
Abstract
Sperm-associated antigen 9 (SPAG9) is a member of cancer-testis antigen, having characteristics of a scaffold protein, which is involved in the c-Jun N-terminal kinase JNK signaling pathway, suggesting its key involvement in different physiological processes, such as survival, apoptosis, tumorigenesis, and cell proliferation. We identified two families (A and B) having multisystem features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Whole genome sequencing (WGS) in families A and B revealed a homozygous frameshift variant (c.903del; p.Phe301Leufs*2) in the SPAG9 gene. Sanger sequencing of both families revealed perfect segregation of the identified variant in all family members. 3D protein modeling revealed substantial changes in the protein's secondary structure. Furthermore, RT-qPCR revealed a substantial reduction of SPAG9 gene expression at the mRNA level in the affected individuals of both families, thus supporting the pathogenic nature of the identified variant. For the first time in the literature, biallelic SPAG9 gene variation was linked to multisystem-exhibiting features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Thus, this data supports the notion that SPAG9 plays an important role in a multisystemic disorder in humans.
Collapse
Affiliation(s)
- Majid Alfadhel
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City
(KAMC), King Abdullah International Medical Research Center (KAIMRC), Medical
Genomics Research Department, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of
National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City (KAMC), Genetics
and Precision Medicine Department (GPM), King Abdullah Specialized Children’s
Hospital, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
College of Medicine, Riyadh, Saudi Arabia
| | | | - Muhammad Umair
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City
(KAMC), King Abdullah International Medical Research Center (KAIMRC), Medical
Genomics Research Department, Riyadh, Saudi Arabia
| | - Ahmed Alfaidi
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of
National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City (KAMC), Genetics
and Precision Medicine Department (GPM), King Abdullah Specialized Children’s
Hospital, Riyadh, Saudi Arabia
| | - Deemah Alwadaani
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City
(KAMC), King Abdullah International Medical Research Center (KAIMRC), Medical
Genomics Research Department, Riyadh, Saudi Arabia
| | - Essra Aloyouni
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City
(KAMC), King Abdullah International Medical Research Center (KAIMRC), Medical
Genomics Research Department, Riyadh, Saudi Arabia
| | - Safdar Abbas
- Dartmouth College, Department of Biological Science, Hanover, NH,
United States
| | - Abdulkareem Al Abdulrahman
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City
(KAMC), King Abdullah International Medical Research Center (KAIMRC), Medical
Genomics Research Department, Riyadh, Saudi Arabia
| | - Mohammed Aldrees
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City
(KAMC), King Abdullah International Medical Research Center (KAIMRC), Medical
Genomics Research Department, Riyadh, Saudi Arabia
| | - Abeer Al Tuwaijri
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City
(KAMC), King Abdullah International Medical Research Center (KAIMRC), Medical
Genomics Research Department, Riyadh, Saudi Arabia
| | - Ruaa S. Alharithy
- Security Forces Hospital, Department of Dermatology, Riyadh, Saudi
Arabia
| | - Abdulaziz Alajlan
- Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz
Medical City (KAMC), Department of Pathology and Laboratory Medicine, Riyadh, Saudi
Arabia
| | - Abdulrahman Alswaid
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of
National Guard Health Affairs (MNG-HA), King Abdulaziz Medical City (KAMC), Genetics
and Precision Medicine Department (GPM), King Abdullah Specialized Children’s
Hospital, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
College of Medicine, Riyadh, Saudi Arabia
| | - Saad Almohrij
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
College of Medicine, Riyadh, Saudi Arabia
- Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz
Medical City (KAMC), Department of Surgery, Riyadh, Saudi Arabia
| | - Sultan Al-Khenaizan
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS),
College of Medicine, Riyadh, Saudi Arabia
- Ministry of National Guard Health Affairs (MNG-HA), King Abdulaziz
Medical City (KAMC), Department of Dermatology, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Chediak-Higashi syndrome is a rare autosomal recessive disorder characterized by congenital immunodeficiency, bleeding diathesis, pyogenic infection, partial oculocutaneous albinism, and progressive neurodegeneration. Treatment is hematopoietic stem cell transplantation or bone marrow transplantation; however, this does not treat the neurologic aspect of the disease. Mutations in the lysosomal trafficking regulator (LYST) gene were identified to be causative of Chediak-Higashi, but despite many analyses, there is little functional information about the LYST protein. This review serves to provide an update on the clinical manifestations and cellular defects of Chediak-Higashi syndrome. RECENT FINDINGS More recent papers expand the neurological spectrum of disease in CHS, to include hereditary spastic paraplegia and parkinsonism. Granule size and distribution in NK cells have been investigated in relation to the location of mutations in LYST. Patients with mutations in the ARM/HEAT domain had markedly enlarged granules, but fewer in number. By contrast, patients with mutations in the BEACH domain had more numerous granules that were normal in size to slightly enlarged, but demonstrated markedly impaired polarization. The role of LYST in autophagosome formation has been highlighted in recent studies; LYST was defined to have a prominent role in autophagosome lysosome reformation for the maintenance of lysosomal homeostasis in neurons, while in retinal pigment epithelium cells, LYST deficiency was shown to lead to phagosome accumulation. SUMMARY Despite CHS being a rare disease, investigation into LYST provides an understanding of basic vesicular fusion and fission. Understanding of these mechanisms may provide further insight into the function of LYST.
Collapse
Affiliation(s)
- Mackenzie L. Talbert
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V. Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J. Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Kuptanon C, Morimoto M, Nicoli ER, Stephen J, Yarnell DS, Dorward H, Owen W, Parikh S, Ozbek NY, Malbora B, Ciccone C, Gunay-Aygun M, Gahl WA, Introne WJ, Malicdan MCV. cDNA sequencing increases the molecular diagnostic yield in Chediak-Higashi syndrome. Front Genet 2023; 14:1072784. [PMID: 36968585 PMCID: PMC10031035 DOI: 10.3389/fgene.2023.1072784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Chediak-Higashi syndrome (CHS) is rare autosomal recessive disorder caused by bi-allelic variants in the Lysosomal Trafficking Regulator (LYST) gene. Diagnosis is established by the detection of pathogenic variants in LYST in combination with clinical evidence of disease. Conventional molecular genetic testing of LYST by genomic DNA (gDNA) Sanger sequencing detects the majority of pathogenic variants, but some remain undetected for several individuals clinically diagnosed with CHS. In this study, cDNA Sanger sequencing was pursued as a complementary method to identify variant alleles that are undetected by gDNA Sanger sequencing and to increase molecular diagnostic yield. Methods: Six unrelated individuals with CHS were clinically evaluated and included in this study. gDNA Sanger sequencing and cDNA Sanger sequencing were performed to identify pathogenic LYST variants. Results: Ten novel LYST alleles were identified, including eight nonsense or frameshift variants and two in-frame deletions. Six of these were identified by conventional gDNA Sanger sequencing; cDNA Sanger sequencing was required to identify the remaining variant alleles. Conclusion: By utilizing cDNA sequencing as a complementary technique to identify LYST variants, a complete molecular diagnosis was obtained for all six CHS patients. In this small CHS cohort, the molecular diagnostic yield was increased, and canonical splice site variants identified from gDNA Sanger sequencing were validated by cDNA sequencing. The identification of novel LYST alleles will aid in diagnosing patients and these molecular diagnoses will also lead to genetic counseling, access to services and treatments and clinical trials in the future.
Collapse
Affiliation(s)
- Chulaluk Kuptanon
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marie Morimoto
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Elena-Raluca Nicoli
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Joshi Stephen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - David S. Yarnell
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi Dorward
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William Owen
- Children’s Hospital of The King’s Daughters, Norfolk, VA, United States
| | - Suhag Parikh
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Namik Yasar Ozbek
- Division of Pediatric Hematology and Oncology, University of Yeni Yuzyil, Gaziosmanpasa Hospital, Istanbul, Türkiye
| | - Baris Malbora
- Department of Pediatric Hematology/Oncology, Ankara City Hospital, The University of Health Sciences, Ankara, Türkiye
| | - Carla Ciccone
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Meral Gunay-Aygun
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Wendy J. Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - May Christine V. Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: May Christine V. Malicdan,
| |
Collapse
|
5
|
Villafuerte-De la Cruz R, Chacon-Camacho OF, Rodriguez-Martinez AC, Xilotl-De Jesus N, Arce-Gonzalez R, Rodriguez-De la Torre C, Valdez-Garcia JE, Rojas-Martinez A, Zenteno JC. Case report: Disease phenotype associated with simultaneous biallelic mutations in ABCA4 and USH2A due to uniparental disomy of chromosome 1. Front Genet 2022; 13:949437. [PMID: 36051698 PMCID: PMC9424670 DOI: 10.3389/fgene.2022.949437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Inherited retinal diseases (IRDs) represent a spectrum of clinically and genetically heterogeneous disorders. Our study describes an IRD patient carrying ABCA4 and USH2A pathogenic biallelic mutations as a result of paternal uniparental disomy (UPD) in chromosome 1. The proband is a 9-year-old girl born from non-consanguineous parents. Both parents were asymptomatic and denied family history of ocular disease. Clinical history and ophthalmologic examination of the proband were consistent with Stargardt disease. Whispered voice testing disclosed moderate hearing loss. Next-generation sequencing and Sanger sequencing identified pathogenic variants in ABCA4 (c.4926C>G and c.5044_5058del) and USH2A (c.2276G>T). All variants were present homozygously in DNA from the proband and heterozygously in DNA from the father. No variants were found in maternal DNA. Further analysis of single nucleotide polymorphisms confirmed paternal UPD of chromosome 1. This is the first known patient with confirmed UPD for two recessively mutated IRD genes. Our study expands on the genetic heterogeneity of IRDs and highlights the importance of UPD as a mechanism of autosomal recessive disease in non-consanguineous parents. Moreover, a long-term follow-up is essential for the identification of retinal features that may develop as a result of USH2A-related conditions.
Collapse
Affiliation(s)
| | - O. F. Chacon-Camacho
- Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Genetics Department, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - A. C. Rodriguez-Martinez
- Department of Ophthalmology, University Hospital and Faculty of Medicine, Autonomous University of Nuevo Leon (UANL), Monterrey, Mexico
| | - N. Xilotl-De Jesus
- Genetics Department, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | - R. Arce-Gonzalez
- Genetics Department, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
| | | | - J. E. Valdez-Garcia
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - A. Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
- *Correspondence: A. Rojas-Martinez, ; J. C. Zenteno,
| | - J. C. Zenteno
- Genetics Department, Institute of Ophthalmology “Conde de Valenciana”, Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- *Correspondence: A. Rojas-Martinez, ; J. C. Zenteno,
| |
Collapse
|
6
|
Boluda-Navarro M, Ibáñez M, Liquori A, Franco-Jarava C, Martínez-Gallo M, Rodríguez-Vega H, Teresa J, Carreras C, Such E, Zúñiga Á, Colobran R, Cervera JV. Case Report: Partial Uniparental Disomy Unmasks a Novel Recessive Mutation in the LYST Gene in a Patient With a Severe Phenotype of Chédiak-Higashi Syndrome. Front Immunol 2021; 12:625591. [PMID: 33868243 PMCID: PMC8044466 DOI: 10.3389/fimmu.2021.625591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Chédiak-Higashi syndrome (CHS) is a rare autosomal recessive (AR) immune disorder that has usually been associated to missense, nonsense or indels mutations in the LYST gene. In this study, we describe for the first time the case of a CHS patient carrying a homozygous mutation in the LYST gene inherited as a result of a partial uniparental isodisomy (UPiD) of maternal origin. Sanger sequencing of the LYST cDNA and single nucleotide polymorphism (SNP)-arrays were performed to identify the causative mutation and to explain the molecular mechanism of inheritance, respectively. Partial-UPiD leads to a copy neutral loss of heterozygosity (CN-LOH) of the telomeric region of chromosome 1 (1q41q44), unmasking the potential effect of the mutation detected. The mutation (c.8380dupT) is an insertion located in exon 32 of the LYST gene resulting in a premature stop codon and leading to the loss of all the conserved domains at the C-terminal of the LYST protein. This would account for the severe phenotype observed. We also reviewed the only two previously reported cases of CHS as a result of a uniparental disomy. In this study, we show that the combination of different strategies, including the use of SNP-arrays, is pivotal to fine-tune the diagnosis of rare AR disorders, such as CHS. Moreover, this case highlights the relevance of uniparental disomy as a potential mechanism of CHS expression in non-consanguineous families.
Collapse
Affiliation(s)
- Mireia Boluda-Navarro
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Mariam Ibáñez
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Department of Hematology, Hospital Universitario y Politécnico La Fe, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Alessandro Liquori
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Clara Franco-Jarava
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Héctor Rodríguez-Vega
- Pediatric Hematology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Jaijo Teresa
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Carreras
- Pediatric Hematology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esperanza Such
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ángel Zúñiga
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - José Vicente Cervera
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Barcelona, Spain.,Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
7
|
Abstract
Primary disorders of neutrophil function result from impairment in neutrophil responses that are critical for host defense. This chapter summarizes inherited disorders of neutrophils that cause defects in neutrophil adhesion, migration, and oxidative killing. These include the leukocyte adhesion deficiencies, actin defects and other disorders of chemotaxis, hyperimmunoglobulin E syndrome, Chédiak-Higashi Syndrome, neutrophil specific granule deficiency, chronic granulomatous disease, and myeloperoxidase deficiency. Diagnostic tests and treatment approaches are also summarized for each neutrophil disorder.
Collapse
|
8
|
Abstract
BACKGROUND Numerous different types of variations can occur in DNA and have diverse effects and consequences. The Variation Ontology (VariO) was developed for systematic descriptions of variations and their effects at DNA, RNA and protein levels. RESULTS VariO use and terms for DNA variations are described in depth. VariO provides systematic names for variation types and detailed descriptions for changes in DNA function, structure and properties. The principles of VariO are presented along with examples from published articles or databases, most often in relation to human diseases. VariO terms describe local DNA changes, chromosome number and structure variants, chromatin alterations, as well as genomic changes, whether of genetic or non-genetic origin. CONCLUSIONS DNA variation systematics facilitates unambiguous descriptions of variations and their effects and further reuse and integration of data from different sources by both human and computers.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, SE-22184, Lund, Sweden.
| |
Collapse
|
9
|
Panzer K, Ekhaguere OA, Darbro B, Cook J, Shchelochkov OA. Uniparental Isodisomy of Chromosome 1 Unmasking an Autosomal Recessive 3-Beta Hydroxysteroid Dehydrogenase Type II-Related Congenital Adrenal Hyperplasia. J Clin Res Pediatr Endocrinol 2017; 9:70-73. [PMID: 27796263 PMCID: PMC5363168 DOI: 10.4274/jcrpe.3680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Steroid 3-beta hydroxysteroid dehydrogenase type II (3β-HSD2) deficiency is a rare autosomal recessive form of congenital adrenal hyperplasia (CAH). We report the genetic basis of 3β-HSD2 deficiency arising from uniparental isodisomy (UPD) of chromosome 1. We describe a term undervirilized male whose newborn screen indicated borderline CAH. The patient presented on the 7th day of life in salt-wasting adrenal crisis. Steroid hormone testing revealed a complex pattern suggestive of 3β-HSD deficiency. Chromosomal microarray and single nucleotide polymorphism analysis revealed complete UPD of chromosome 1. Sanger sequencing of HSD3B2 revealed a previously described missense mutation, c.424G>A (p.E142K) in homozygous state, thus confirming the diagnosis of 3β-HSD2 deficiency. We provide evidence of the existence of an uncommon mechanism for HSD3B2 gene-related CAH arising from UPD of chromosome 1.
Collapse
Affiliation(s)
- Karin Panzer
- University of Iowa Hospitals and Clinics, Stead Department of Pediatrics, Iowa, USA
| | - Osayame A. Ekhaguere
- The Children’s Hospital of Philadelphia, Division of Neonatal and Perinatal Medicine, Philadelphia, USA
,* Address for Correspondence: The Children’s Hospital of Philadelphia, Division of Neonatal and Perinatal Medicine, Philadelphia, USA Phone: +1 319 855-9093 E-mail:
| | - Benjamin Darbro
- University of Iowa Hospitals and Clinics, Stead Department of Pediatrics, Iowa, USA
| | - Jennifer Cook
- Blank Children’s Hospital, Department of Pediatric Endocrinology, Iowa, USA
| | - Oleg A. Shchelochkov
- University of Iowa Hospitals and Clinics, Stead Department of Pediatrics, Iowa, USA
,
Current Institution: National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Introne WJ, Westbroek W, Groden CA, Bhambhani V, Golas GA, Baker EH, Lehky TJ, Snow J, Ziegler SG, Malicdan MCV, Adams DR, Dorward HM, Hess RA, Huizing M, Gahl WA, Toro C. Neurologic involvement in patients with atypical Chediak-Higashi disease. Neurology 2017; 88:e57-e65. [PMID: 28193763 PMCID: PMC5584077 DOI: 10.1212/wnl.0000000000003622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To delineate the developmental and progressive neurodegenerative features in 9 young adults with the atypical form of Chediak-Higashi disease (CHD) enrolled in a natural history study. METHODS Patients with atypical clinical features, but diagnostically confirmed CHD by standard evaluation of blood smears and molecular genotyping, underwent complete neurologic evaluation, MRI of the brain, electrophysiologic examination, and neuropsychological testing. Fibroblasts were collected to investigate the cellular phenotype and correlation with the clinical presentation. RESULTS In 9 mildly affected patients with CHD, we documented learning and behavioral difficulties along with developmental structural abnormalities of the cerebellum and posterior fossa, which are apparent early in childhood. A range of progressive neurologic problems emerge in early adulthood, including cerebellar deficits, polyneuropathies, spasticity, cognitive decline, and parkinsonism. CONCLUSIONS Patients with undiagnosed atypical CHD manifesting some of these wide-ranging yet nonspecific neurologic complaints may reside in general and specialty neurology clinics. The absence of the typical bleeding or infectious diathesis in mildly affected patients with CHD renders them difficult to diagnose. Identification of these individuals is important not only for close surveillance of potential CHD-related systemic complications but also for a full understanding of the natural history of CHD and the potential role of the disease-causing protein, LYST, to the pathophysiology of other neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Wendy J Introne
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis.
| | - Wendy Westbroek
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Catherine A Groden
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Vikas Bhambhani
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Gretchen A Golas
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Eva H Baker
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Tanya J Lehky
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Joseph Snow
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Shira G Ziegler
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - May Christine V Malicdan
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - David R Adams
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Heidi M Dorward
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Richard A Hess
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Marjan Huizing
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - William A Gahl
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Camilo Toro
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., S.G.Z., M.C.V.M. D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| |
Collapse
|
11
|
Introne WJ, Westbroek W, Cullinane AR, Groden CA, Bhambhani V, Golas GA, Baker EH, Lehky TJ, Snow J, Ziegler SG, Adams DR, Dorward HM, Hess RA, Huizing M, Gahl WA, Toro C. Neurologic involvement in patients with atypical Chediak-Higashi disease. Neurology 2016; 86:1320-1328. [PMID: 26944273 PMCID: PMC4826336 DOI: 10.1212/wnl.0000000000002551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To delineate the developmental and progressive neurodegenerative features in 9 young adults with the atypical form of Chediak-Higashi disease (CHD) enrolled in a natural history study. METHODS Patients with atypical clinical features, but diagnostically confirmed CHD by standard evaluation of blood smears and molecular genotyping, underwent complete neurologic evaluation, MRI of the brain, electrophysiologic examination, and neuropsychological testing. Fibroblasts were collected to investigate the cellular phenotype and correlation with the clinical presentation. RESULTS In 9 mildly affected patients with CHD, we documented learning and behavioral difficulties along with developmental structural abnormalities of the cerebellum and posterior fossa, which are apparent early in childhood. A range of progressive neurologic problems emerge in early adulthood, including cerebellar deficits, polyneuropathies, spasticity, cognitive decline, and parkinsonism. CONCLUSIONS Patients with undiagnosed atypical CHD manifesting some of these wide-ranging yet nonspecific neurologic complaints may reside in general and specialty neurology clinics. The absence of the typical bleeding or infectious diathesis in mildly affected patients with CHD renders them difficult to diagnose. Identification of these individuals is important not only for close surveillance of potential CHD-related systemic complications but also for a full understanding of the natural history of CHD and the potential role of the disease-causing protein, LYST, to the pathophysiology of other neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Wendy J Introne
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis.
| | - Wendy Westbroek
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Andrew R Cullinane
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Catherine A Groden
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Vikas Bhambhani
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Gretchen A Golas
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Eva H Baker
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Tanya J Lehky
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Joseph Snow
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Shira G Ziegler
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - David R Adams
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Heidi M Dorward
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Richard A Hess
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Marjan Huizing
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - William A Gahl
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| | - Camilo Toro
- From the Office of the Clinical Director (W.J.I., C.A.G., V.B., G.A.G., W.A.G., C.T.) and Human Biochemical Genetics Section, Medical Genetics Branch (W.W., A.R.C., S.G.Z., D.R.A., H.M.D., R.A.H., M.H., W.A.G.), National Human Genome Research Institute, Department of Radiology and Imaging Sciences, Clinical Center (E.H.B.), Electromyography Section, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke (T.J.L.), and Office of the Clinical Director, National Institute of Mental Health (J.S.), National Institutes of Health, Bethesda, MD; and Metabolic and Clinical Geneticist (V.B.), Department of Medical Genetics, Children's Hospitals and Clinics of Minnesota, Minneapolis
| |
Collapse
|
12
|
Albert JS, Bhattacharyya N, Wolfe LA, Bone WP, Maduro V, Accardi J, Adams DR, Schwartz CE, Norris J, Wood T, Gafni RI, Collins MT, Tosi LL, Markello TC, Gahl WA, Boerkoel CF. Impaired osteoblast and osteoclast function characterize the osteoporosis of Snyder - Robinson syndrome. Orphanet J Rare Dis 2015; 10:27. [PMID: 25888122 PMCID: PMC4428506 DOI: 10.1186/s13023-015-0235-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/28/2015] [Indexed: 11/25/2022] Open
Abstract
Background Snyder-Robinson Syndrome (SRS) is an X-linked intellectual disability disorder also characterized by osteoporosis, scoliosis, and dysmorphic facial features. It is caused by mutations in SMS, a ubiquitously expressed gene encoding the polyamine biosynthetic enzyme spermine synthase. We hypothesized that the tissue specificity of SRS arises from differential sensitivity to spermidine toxicity or spermine deficiency. Methods We performed detailed clinical, endocrine, histopathologic, and morphometric studies on two affected brothers with a spermine synthase loss of function mutation (NM_004595.4:c.443A > G, p.Gln148Arg). We also measured spermine and spermidine levels in cultured human bone marrow stromal cells (hBMSCs) and fibroblasts using the Biochrom 30 polyamine protocol and assessed the osteogenic potential of hBMSCs. Results In addition to the known tissue-specific features of SRS, the propositi manifested retinal pigmentary changes, recurrent episodes of hyper- and hypoglycemia, nephrocalcinosis, renal cysts, and frequent respiratory infections. Bone histopathology and morphometry identified a profound depletion of osteoblasts and osteoclasts, absence of a trabecular meshwork, a low bone volume and a thin cortex. Comparison of cultured fibroblasts from affected and unaffected individuals showed relatively small changes in polyamine content, whereas comparison of cultured osteoblasts identified marked differences in spermidine and spermine content. Osteogenic differentiation of the SRS-derived hBMSCs identified a severe deficiency of calcium phosphate mineralization. Conclusions Our findings support the hypothesis that cell specific alterations in polyamine metabolism contribute to the tissue specificity of SRS features, and that the low bone density arises from a failure of mineralization. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica S Albert
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Nisan Bhattacharyya
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Lynne A Wolfe
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - William P Bone
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Valerie Maduro
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - John Accardi
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - David R Adams
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Charles E Schwartz
- J.C. Self Research Institute, Greenwood Genetics Centre, Greenwood, SC, 29646, USA.
| | - Joy Norris
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tim Wood
- J.C. Self Research Institute, Greenwood Genetics Centre, Greenwood, SC, 29646, USA.
| | - Rachel I Gafni
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Michael T Collins
- Skeletal Clinical Studies Unit, Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Laura L Tosi
- George Washington University School of Medicine, Washington, DC, USA. .,Children's National Medical Center, Washington, DC, USA.
| | - Thomas C Markello
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - William A Gahl
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA. .,Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| | - Cornelius F Boerkoel
- Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
13
|
Balint B, Bhatia KP. Parkinsonism and Other Movement Disorders Associated with Chediak-Higashi Syndrome: Case Report and Systematic Literature Review. Mov Disord Clin Pract 2015; 2:93-98. [PMID: 30363907 DOI: 10.1002/mdc3.12111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 02/02/2023] Open
Affiliation(s)
- Bettina Balint
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology London United Kingdom.,Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology London United Kingdom
| |
Collapse
|
14
|
Lozano ML, Rivera J, Sánchez-Guiu I, Vicente V. Towards the targeted management of Chediak-Higashi syndrome. Orphanet J Rare Dis 2014; 9:132. [PMID: 25129365 PMCID: PMC4243965 DOI: 10.1186/s13023-014-0132-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive congenital immunodeficiency caused by mutations in CHS1, a gene encoding a putative lysosomal trafficking protein. In the majority of patients, this disorder is typically characterized by infantile-onset hemophagocytic lymphohistiocytosis (HLH), which is lethal unless allogeneic transplantation is performed. A small number of individuals have the attenuated form of the disease and do not benefit from transplant. Improved outcomes of transplantation have been reported when performed before the development of HLH, thus it is important to quickly differentiate patients that present with the childhood form of disease and to prematurely enroll them into a transplantation protocol. In addition, this would also preclude those that exhibit clinical phenotypes of adolescent and adult CHS from this treatment. Patients with an absence of cytotoxic T lymphocyte (CTL) function have a high risk for developing HLH, and could therefore benefit the most from early hematopoietic stem cell transplantation (HSCT). However, although normal CTL cytotoxicity or bi-allelic missense mutations do not exclude the occurrence of HLH in childhood, a more conservative approach is justified. This article summarizes recent advances in the clinical characterization of CHS patients, provides updates on promising new testing methods, and focuses on specific therapeutic approaches.
Collapse
Affiliation(s)
- Maria L Lozano
- Centro Regional de Hemodonación, Hospital JM Morales Meseguer, University of Murcia, IMIB-Arrixaca, C/Ronda de Garay s/n, Murcia 30003, Spain.
| | | | | | | |
Collapse
|
15
|
Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur J Hum Genet 2011; 20:476-9. [PMID: 22146942 DOI: 10.1038/ejhg.2011.222] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fatty acid hydroxylase-associated neurodegeneration due to fatty acid 2-hydroxylase deficiency presents with a wide range of phenotypes including spastic paraplegia, leukodystrophy, and/or brain iron deposition. All previously described families with this disorder were consanguineous, with homozygous mutations in the probands. We describe a 10-year-old male, from a non-consanguineous family, with progressive spastic paraplegia, dystonia, ataxia, and cognitive decline associated with a sural axonal neuropathy. The use of high-throughput sequencing techniques combined with SNP array analyses revealed a novel paternally derived missense mutation and an overlapping novel maternally derived ~28-kb genomic deletion in FA2H. This patient provides further insight into the consistent features of this disorder and expands our understanding of its phenotypic presentation. The presence of a sural nerve axonal neuropathy had not been previously associated with this disorder and so may extend the phenotype.
Collapse
|
16
|
Abstract
PURPOSE This report describes the National Institutes of Health Undiagnosed Diseases Program, details the Program's application of genomic technology to establish diagnoses, and details the Program's success rate during its first 2 years. METHODS Each accepted study participant was extensively phenotyped. A subset of participants and selected family members (29 patients and 78 unaffected family members) was subjected to an integrated set of genomic analyses including high-density single-nucleotide polymorphism arrays and whole exome or genome analysis. RESULTS Of 1,191 medical records reviewed, 326 patients were accepted and 160 were admitted directly to the National Institutes of Health Clinical Center on the Undiagnosed Diseases Program service. Of those, 47% were children, 55% were females, and 53% had neurologic disorders. Diagnoses were reached on 39 participants (24%) on clinical, biochemical, pathologic, or molecular grounds; 21 diagnoses involved rare or ultra-rare diseases. Three disorders were diagnosed based on single-nucleotide polymorphism array analysis and three others using whole exome sequencing and filtering of variants. Two new disorders were discovered. Analysis of the single-nucleotide polymorphism array study cohort revealed that large stretches of homozygosity were more common in affected participants relative to controls. CONCLUSION The National Institutes of Health Undiagnosed Diseases Program addresses an unmet need, i.e., the diagnosis of patients with complex, multisystem disorders. It may serve as a model for the clinical application of emerging genomic technologies and is providing insights into the characteristics of diseases that remain undiagnosed after extensive clinical workup.
Collapse
|
17
|
Novel Heterogenous CHS1 Mutations Identified in Five Japanese Patients with Chediak-Higashi Syndrome. Case Rep Med 2010; 2010:464671. [PMID: 21209802 PMCID: PMC3014749 DOI: 10.1155/2010/464671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 11/11/2010] [Indexed: 12/11/2022] Open
Abstract
Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive disorder characterized by oculocutaneous albinism, recurrent bacterial infections and progressive neurological dysfunction. We demonstrate novel heterogenous mutations of CHS1, the responsive gene of CHS, identified in five Japanese patients with CHS. Patients 1, 2, and 3 were siblings, and they had albinism of the skin and hair. They all had a heterogenous two-base deletion (c.5541-5542 del AA, p.Q1847fsX1850) in exon 18. Patient 4 had a heterogenous single-base insertion (c.3944-3945 ins C, p.T1315fsX1331) in exon 10. The patient exhibited severe early-onset phenotype and suffered from hemophagocytic lymphohistiocytosis. Patient 5 had two heterogenous nonsense mutations; c.7982C>G, p.S2661X in exon 30 and c.8281A>T, p.R2761X in exon 31. The patient suffered from infections in childhood and had visual disturbance and albinism of the skin and hair. The CHS1 mutations described here have not been reported previously.
Collapse
|