1
|
Santaniello C, Faversani A, Corsaro L, Melloni G, Motta S, Mandorino E, Sacco D, Stioui S, Ferrara F, Barteselli D, De Vita D, Manuelli D, Costantino L. Characterization of a New Variant in ARHGAP31 Probably Involved in Adams-Oliver Syndrome in a Family with a Variable Phenotypic Spectrum. Genes (Basel) 2024; 15:536. [PMID: 38790165 PMCID: PMC11120939 DOI: 10.3390/genes15050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Adams-Oliver syndrome is a rare inherited condition characterized by scalp defects and limb abnormalities. It is caused by variants in different genes such as ARHGAP31. Here, we used an interdisciplinary approach to study a family with lower limb anomalies. We identified a novel variant in the ARHGAP31 gene that is predicted to result in a truncated protein with a constitutively activated catalytic site due to the loss of 688 amino acids involved in the C-terminal domain, essential for protein auto-inhibition. Pathogenic variants in ARHGAP31 exon 12, leading to a premature protein termination, are associated with Adams-Oliver syndrome. Bioinformatic analysis was useful to elucidate the impact of the identified genetic variant on protein structure. To better understand the impact of the identified variant, 3D protein models were predicted for the ARHGAP31 wild type, the newly discovered variant, and other pathogenetic alterations already reported. Our study identified a novel variant probably involved in Adams-Oliver syndrome and increased the evidence on the phenotypic variability in patients affected by this syndrome, underlining the importance of translational research, including experimental and bioinformatics analyses. This strategy represents a successful model to investigate molecular mechanisms involved in syndrome occurrence.
Collapse
Affiliation(s)
- Carlo Santaniello
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Alice Faversani
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Luigi Corsaro
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
- Department of Brain and Behavioral Science, Università Degli Studi di Pavia, 27100 Pavia, Italy
| | - Giulia Melloni
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Silvia Motta
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Elena Mandorino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Davide Sacco
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
- Department of Brain and Behavioral Science, Università Degli Studi di Pavia, 27100 Pavia, Italy
| | - Sabine Stioui
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, 20147 Milan, Italy;
| | - Davide Barteselli
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Dario De Vita
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Debora Manuelli
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| | - Lucy Costantino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano, 20147 Milan, Italy; (C.S.); (A.F.); (L.C.); (G.M.); (S.M.); (E.M.); (D.S.); (S.S.); (D.B.); (D.D.V.); (D.M.)
| |
Collapse
|
2
|
Bibi A, Uddin S, Naeem M, Syed A, Ud-Din Qazi W, Rathore FA, Malik S. Prevalence pattern, phenotypic manifestation, and descriptive genetics of congenital limb deficiencies in Pakistan. Prosthet Orthot Int 2023; 47:479-485. [PMID: 36723395 DOI: 10.1097/pxr.0000000000000204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/21/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Congenital limb deficiency (CLD) is a group of very rare disorders characterized by substantial hypoplasia or the complete absence of 1 or more bones of limbs. Congenital limb deficiency has a significant physical, clinical, and psychological burden on the affected individuals and their families. This cross-sectional study aimed to describe the prevalence pattern, phenotypic manifestations, and biodemographic factors associated with CLD in a cohort assembled from the Pakistani population from the Northwestern region. METHODS Through a prospective cross-sectional study, 141 individuals having 166 limbs with CLD were recruited during 2017-2021. RESULTS There were 77 (55%) individuals with transverse defects, 61 (43%) with longitudinal defects, and 3 (2%) with Intercalary defects. Among the patients with transverse defects, 52 had terminal amputations and 25 had symbrachydactyly. Among the longitudinal defects, thumb aplasia/hypoplasia was the most common presentation (20 patients), followed by oligodactyly (18), and radial hemimelia (18). Eighty six percent had upper-limb deficiencies, 83% had unilateral deficiencies, and 92% were sporadic in nature. The parental consanguinity was observed in 33% individuals, and 79% cases had an isolated presentation which may be indicative of the substantial role of nongenetic factors in the etiology of CLD. CONCLUSIONS This study demonstrates marked heterogeneity in CLD subtypes in the involvement of limbs and associated variables. There is a need to establish a national registry for CLD, molecular genetic diagnosis, and multidisciplinary medical and social rehabilitation services for these individuals.
Collapse
Affiliation(s)
- Anisa Bibi
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sader Uddin
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Naeem
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amman Syed
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Waheed Ud-Din Qazi
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farooq Azam Rathore
- Armed Forces Institute of Rehabilitation Medicine (AFIRM), Rawalpindi, Pakistan
| | - Sajid Malik
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
3
|
CdGAP maintains podocyte function and modulates focal adhesions in a Src kinase-dependent manner. Sci Rep 2022; 12:18657. [PMID: 36333327 PMCID: PMC9636259 DOI: 10.1038/s41598-022-21634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice. However, which GAP and GEF modulate Rac1 activity in podocytes remains unknown. Here, using a proximity-based ligation assay, we identified CdGAP (ARHGAP31) and β-PIX (ARHGEF7) as the major regulatory proteins interacting with Rac1 in human podocytes. CdGAP interacted with β-PIX through its basic region, and upon EGF stimulation, they both translocated to the plasma membrane in podocytes. CdGAP-depleted podocytes had altered cell motility and increased basal Rac1 and Cdc42 activities. When stimulated with EGF, CdGAP-depleted podocytes showed impaired β-PIX membrane-translocation and tyrosine phosphorylation, and reduced activities of Src kinase, focal adhesion kinase, and paxillin. Systemic and podocyte-specific CdGAP-knockout mice developed mild but significant proteinuria, which was exacerbated by Adriamycin. Collectively, these findings show that CdGAP contributes to maintain podocyte function and protect them from injury.
Collapse
|
4
|
Tian H, Chu F, Li Y, Xu M, Li W, Li C. Synergistic effects of rare variants of ARHGAP31 and FBLN1 in vitro in terminal transverse limb defects. Front Genet 2022; 13:946854. [PMID: 36176297 PMCID: PMC9513373 DOI: 10.3389/fgene.2022.946854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLDs) are the most common features of Adams-Oliver syndrome (AOS). ARHGAP31 is one of the causative genes for autosomal dominant forms of AOS, meanwhile its variants may only cause isolated TTLD. Here, we report a proband presented with apparent TTLD but not ACC. Methods: Whole exome sequencing (WES) and Sanger sequencing were applied to identify causative genes. Expression vectors were constructed for transfections in mammalian cell cultures followed by biochemical and functional analysis including immunoblotting, immunofluorescence staining, and cell counting kit-8 assay. Results: WES and Sanger sequencing suggested that the proband inherited rare ARHGAP31 variant [c.2623G > A (p.Glu875Lys)] and a rare FBLN1 variant [c.1649G > A (p.Arg550His)] from one of her asymptomatic parents, respectively. Given FBLN1 variation has also been linked to syndactyly, we suspected that the two genes together contributed to the TTLD phenotype and explored their possible roles in vitro. Mutant FBLN1 showed reduced expression resulted from impaired protein stability, whereas ARHGAP31 protein expression was unaltered by mutation. Functional assays showed that only in the co-transfected group of two mutants cell viability was decreased, cell proliferation was impaired, and apoptosis was activated. Cdc42 activity was declined by both ARHGAP31 mutation and FBLN1 mutation alone, and the two together. Furthermore, the MAPK/ERK pathway was only activated by two mutants co-transfected group compared with two wild-type transfections. Conclusion: We report a case carrying two rare variants of limb defects associated genes, ARHGAP31 and FBLN1, and provide in vitro evidence that synergistic disruption of cellular functions attributed by the two mutants may potentiate the penetrance of clinical manifestations, expanding our knowledge of clinical complexity of causal gene interactions in TTLD and other genetic disorders.
Collapse
Affiliation(s)
- Hong Tian
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Tian, ; Chuanzhou Li,
| | - Fan Chu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Xu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjiao Li
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Tian, ; Chuanzhou Li,
| |
Collapse
|
5
|
Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. NPJ Genom Med 2021; 6:74. [PMID: 34531397 PMCID: PMC8445947 DOI: 10.1038/s41525-021-00238-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in a clinically unselected cohort of 150 singleton CP patients, with CP confirmed at >4 years of age. Clinical grade GS was performed on the proband and variants were filtered, and classified according to American College of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG-AMP) guidelines. Variants classified as pathogenic or likely pathogenic (P/LP) were further assessed for their contribution to CP. In total, 24.7% of individuals carried a P/LP variant(s) causing or increasing risk of CP, with 4.7% resolved by copy number variant analysis and 20% carrying single nucleotide or indel variants. A further 34.7% carried one or more rare, high impact variants of uncertain significance (VUS) in variation intolerant genes. Variants were identified in a heterogeneous group of genes, including genes associated with hereditary spastic paraplegia, clotting and thrombophilic disorders, small vessel disease, and other neurodevelopmental disorders. Approximately 1/2 of individuals were classified as likely to benefit from changed clinical management as a result of genetic findings. In addition, no significant association between genetic findings and clinical factors was detectable in this cohort, suggesting that systematic sequencing of CP will be required to avoid missed diagnoses.
Collapse
|
6
|
Reichrath J, Reichrath S. Notch Pathway and Inherited Diseases: Challenge and Promise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:159-187. [PMID: 32060876 DOI: 10.1007/978-3-030-34436-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolutionary highly conserved Notch pathway governs many cellular core processes including cell fate decisions. Although it is characterized by a simple molecular design, Notch signaling, which first developed in metazoans, represents one of the most important pathways that govern embryonic development. Consequently, a broad variety of independent inherited diseases linked to defective Notch signaling has now been identified, including Alagille, Adams-Oliver, and Hajdu-Cheney syndromes, CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), early-onset arteriopathy with cavitating leukodystrophy, lateral meningocele syndrome, and infantile myofibromatosis. In this review, we give a brief overview on molecular pathology and clinical findings in congenital diseases linked to the Notch pathway. Moreover, we discuss future developments in basic science and clinical practice that may emerge from recent progress in our understanding of the role of Notch in health and disease.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany
| |
Collapse
|
7
|
Ogawa M, Okajima T. Structure and function of extracellular O-GlcNAc. Curr Opin Struct Biol 2019; 56:72-77. [PMID: 30669087 DOI: 10.1016/j.sbi.2018.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/05/2018] [Indexed: 11/27/2022]
Abstract
Extracellular O-GlcNAc is a unique modification restricted to the epidermal growth factor (EGF) domain-containing glycoproteins. This O-GlcNAcylation is catalyzed by the EGF-domain specific O-GlcNAc transferase (EOGT), which is localized in the lumen of endoplasmic reticulum. In humans, EOGT is one of the causative genes of a congenital disease, Adams-Oliver syndrome. EOGT is highly expressed in endothelial cells and regulates vascular development and integrity by potentiating Delta-like ligand-mediated Notch signaling. In Drosophila, Eogt modifies Dumpy, an apical extracellular matrix glycoprotein, and affects Dumpy-dependent cell-matrix interaction. In this review, we summarize the current findings of the structure and functions of extracellular O-GlcNAc in animals.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
8
|
Southgate L. Current opinion in the molecular genetics of Adams-Oliver syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2019.1559049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| |
Collapse
|
9
|
Meester JAN, Sukalo M, Schröder KC, Schanze D, Baynam G, Borck G, Bramswig NC, Duman D, Gilbert-Dussardier B, Holder-Espinasse M, Itin P, Johnson DS, Joss S, Koillinen H, McKenzie F, Morton J, Nelle H, Reardon W, Roll C, Salih MA, Savarirayan R, Scurr I, Splitt M, Thompson E, Titheradge H, Travers CP, Van Maldergem L, Whiteford M, Wieczorek D, Vandeweyer G, Trembath R, Van Laer L, Loeys BL, Zenker M, Southgate L, Wuyts W. Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort. Hum Mutat 2018; 39:1246-1261. [PMID: 29924900 PMCID: PMC6175364 DOI: 10.1002/humu.23567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
Abstract
Adams–Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next‐generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype–phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Kim C Schröder
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Gareth Baynam
- Genetic Services of Western Australia and the Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia.,Telethon Kids Institute, Perth, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Nuria C Bramswig
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, Ankara, Turkey
| | | | - Muriel Holder-Espinasse
- Guy's Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Peter Itin
- Department of Dermatology, Basel University Hospital, Basel, Switzerland
| | - Diana S Johnson
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Hannele Koillinen
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Fiona McKenzie
- Genetic Services of Western Australia, King Edward Memorial Hospital for Women, Subiaco, Australia
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Heike Nelle
- MVZ für Pränatalmedizin und Genetik, Nürnberg, Germany
| | - Willie Reardon
- Clinical Genetics, National Maternity Hospital, Dublin, Ireland
| | - Claudia Roll
- Abteilung Neonatologie und Pädiatrische Intensivmedizin, Vestische Kinder- und Jugendklinik Datteln, Universität Witten/Herdecke, Datteln, Germany
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, and the University of Melbourne, Melbourne, Australia
| | - Ingrid Scurr
- Bristol Genetics Service, University Hospitals Bristol NHS Foundation Trust, St Michael's Hospital, Bristol, United Kingdom
| | - Miranda Splitt
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Thompson
- South Australian Clinical Genetics Service, North Adelaide, South Australia, Australia, SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Hannah Titheradge
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Colm P Travers
- Division of Neonatology, University of Alabama at Birmingham, Birmingham, USA
| | | | - Margo Whiteford
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Richard Trembath
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Laura Southgate
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom.,Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Wim Wuyts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
10
|
Ben Djoudi Ouadda A, He Y, Calabrese V, Ishii H, Chidiac R, Gratton JP, Roux PP, Lamarche-Vane N. CdGAP/ARHGAP31 is regulated by RSK phosphorylation and binding to 14-3-3β adaptor protein. Oncotarget 2018; 9:11646-11664. [PMID: 29545927 PMCID: PMC5837747 DOI: 10.18632/oncotarget.24126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/03/2017] [Indexed: 12/29/2022] Open
Abstract
Cdc42 GTPase-activating protein (CdGAP, also named ARHGAP31) is a negative regulator of the GTPases Rac1 and Cdc42. Associated with the rare developmental disorder Adams-Oliver Syndrome (AOS), CdGAP is critical for embryonic vascular development and VEGF-mediated angiogenesis. Moreover, CdGAP is an essential component in the synergistic interaction between TGFβ and ErbB-2 signaling pathways during breast cancer cell migration and invasion, and is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. CdGAP is highly phosphorylated on serine and threonine residues in response to growth factors and is a substrate of ERK1/2 and GSK-3. Here, we identified Ser1093 and Ser1163 in the C-terminal region of CdGAP, which are phosphorylated by RSK in response to phorbol ester. These phospho-residues create docking sites for binding to 14-3-3 adaptor proteins. The interaction between CdGAP and 14-3-3 proteins inhibits the GAP activity of CdGAP and sequesters CdGAP into the cytoplasm. Consequently, the nucleocytoplasmic shuttling of CdGAP is inhibited and CdGAP-induced cell rounding is abolished. In addition, 14-3-3β inhibits the ability of CdGAP to repress the E-cadherin promoter and to induce cell migration. Finally, we show that 14-3-3β is unable to regulate the activity and subcellular localization of the AOS-related mutant proteins lacking these phospho-residues. Altogether, we provide a novel mechanism of regulation of CdGAP activity and localization, which impacts directly on a better understanding of the role of CdGAP as a promoter of breast cancer and in the molecular causes of AOS.
Collapse
Affiliation(s)
- Ali Ben Djoudi Ouadda
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| | - Yi He
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| | - Viviane Calabrese
- Institute for Research in Immunology and Cancer (IRIC), Montreal, Quebec, H3T 1J4, Canada
| | - Hidetaka Ishii
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| | - Rony Chidiac
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Department of pharmacology, Montreal, Quebec, H3T 1J4, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Department of pharmacology, Montreal, Quebec, H3T 1J4, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Montreal, Quebec, H3T 1J4, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| |
Collapse
|
11
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
12
|
McCormack JJ, Bruche S, Ouadda ABD, Ishii H, Lu H, Garcia-Cattaneo A, Chávez-Olórtegui C, Lamarche-Vane N, Braga VMM. The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts. Sci Rep 2017; 7:9249. [PMID: 28835688 PMCID: PMC5569031 DOI: 10.1038/s41598-017-09024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022] Open
Abstract
Levels of active Rac1 at epithelial junctions are partially modulated via interaction with Ajuba, an actin binding and scaffolding protein. Here we demonstrate that Ajuba interacts with the Cdc42 GTPase activating protein CdGAP, a GAP for Rac1 and Cdc42, at cell-cell contacts. CdGAP recruitment to junctions does not require Ajuba; rather Ajuba seems to control CdGAP residence at sites of cell-cell adhesion. CdGAP expression potently perturbs junctions and Ajuba binding inhibits CdGAP activity. Ajuba interacts with Rac1 and CdGAP via distinct domains and can potentially bring them in close proximity at junctions to facilitate activity regulation. Functionally, CdGAP-Ajuba interaction maintains junctional integrity in homeostasis and diseases: (i) gain-of-function CdGAP mutants found in Adams-Oliver Syndrome patients strongly destabilize cell-cell contacts and (ii) CdGAP mRNA levels are inversely correlated with E-cadherin protein expression in different cancers. We present conceptual insights on how Ajuba can integrate CdGAP binding and inactivation with the spatio-temporal regulation of Rac1 activity at junctions. Ajuba provides a novel mechanism due to its ability to bind to CdGAP and Rac1 via distinct domains and influence the activation status of both proteins. This functional interplay may contribute towards conserving the epithelial tissue architecture at steady-state and in different pathologies.
Collapse
Affiliation(s)
- J J McCormack
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - S Bruche
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - A B D Ouadda
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Ishii
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Lu
- Cancer Division, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - A Garcia-Cattaneo
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - C Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - N Lamarche-Vane
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - V M M Braga
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
13
|
Hassed S, Li S, Mulvihill J, Aston C, Palmer S. Adams-Oliver syndrome review of the literature: Refining the diagnostic phenotype. Am J Med Genet A 2017; 173:790-800. [PMID: 28160419 DOI: 10.1002/ajmg.a.37889] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Abstract
The Adams-Oliver syndrome (AOS) is defined as aplasia cutis congenita (ACC) with transverse terminal limb defects (TTLD). Frequencies of associated anomalies are not well characterized. Six causative genes have been identified: ARHGAP31, DOCK6, EOGT, RBPJ, NOTCH1, and DLL4. We review 385 previously described individuals (139 non-familial and 246 familial probands and family members) and add clinical data on 13 previously unreported individuals with AOS. In addition to ACC and TTLD, the most commonly associated anomalies included a wide variety of central nervous system (CNS) anomalies and congenital heart defects each seen in 23%. CNS anomalies included structural anomalies, microcephaly, vascular defects, and vascular sequelae. CNS migration defects were common. Cutis marmorata telangiectasia congenita (CMTC) was found in 19% of the study population and other vascular anomalies were seen in 14%. Hemorrhage was listed as the cause of death for five of 25 deaths reported. A relatively large number of non-familial probands were reported to have hepatoportal sclerosis with portal hypertension and esophageal varices. Non-familial probands were more likely to have additional anomalies than were familial probands. The data reported herein provide a basis for refining the diagnostic features of AOS and suggest management recommendations for probands newly diagnosed with AOS. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susan Hassed
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shibo Li
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - John Mulvihill
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Christopher Aston
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Susan Palmer
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
14
|
He Y, Northey JJ, Pelletier A, Kos Z, Meunier L, Haibe-Kains B, Mes-Masson AM, Côté JF, Siegel PM, Lamarche-Vane N. The Cdc42/Rac1 regulator CdGAP is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. Oncogene 2017; 36:3490-3503. [PMID: 28135249 PMCID: PMC5423781 DOI: 10.1038/onc.2016.492] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022]
Abstract
The loss of E-cadherin causes dysfunction of the cell-cell junction machinery, which is an initial step in epithelial-to-mesenchymal transition (EMT), facilitating cancer cell invasion and the formation of metastases. A set of transcriptional repressors of E-cadherin (CDH1) gene expression, including Snail1, Snail2 and Zeb2 mediate E-cadherin downregulation in breast cancer. However, the molecular mechanisms underlying the control of E-cadherin expression in breast cancer progression remain largely unknown. Here, by using global gene expression approaches, we uncover a novel function for Cdc42 GTPase-activating protein (CdGAP) in the regulation of expression of genes involved in EMT. We found that CdGAP used its proline-rich domain to form a functional complex with Zeb2 to mediate the repression of E-cadherin expression in ErbB2-transformed breast cancer cells. Conversely, knockdown of CdGAP expression led to a decrease of the transcriptional repressors Snail1 and Zeb2, and this correlated with an increase in E-cadherin levels, restoration of cell-cell junctions, and epithelial-like morphological changes. In vivo, loss of CdGAP in ErbB2-transformed breast cancer cells impaired tumor growth and suppressed metastasis to lungs. Finally, CdGAP was highly expressed in basal-type breast cancer cells, and its strong expression correlated with poor prognosis in breast cancer patients. Together, these data support a previously unknown nuclear function for CdGAP where it cooperates in a GAP-independent manner with transcriptional repressors to function as a critical modulator of breast cancer through repression of E-cadherin transcription. Targeting Zeb2-CdGAP interactions may represent novel therapeutic opportunities for breast cancer treatment.
Collapse
Affiliation(s)
- Y He
- Cancer Research Program, Research Institute of the McGill University Health Center, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - J J Northey
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - A Pelletier
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
| | - Z Kos
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - L Meunier
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR/CHUM), Montreal, Quebec, Canada
| | - B Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - A-M Mes-Masson
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CR/CHUM), Montreal, Quebec, Canada
| | - J-F Côté
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
| | - P M Siegel
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - N Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Center, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis. Sci Rep 2016; 6:27485. [PMID: 27270835 PMCID: PMC4895392 DOI: 10.1038/srep27485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023] Open
Abstract
Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP(-/-) mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction.
Collapse
|
16
|
Shamseldin HE, Anazi S, Wakil SM, Faqeih E, El Khashab HY, Salih MA, Al-Qattan MM, Hashem M, Alsedairy H, Alkuraya FS. Novel copy number variants and major limb reduction malformation: Report of three cases. Am J Med Genet A 2016; 170A:1245-50. [PMID: 26749485 DOI: 10.1002/ajmg.a.37550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/25/2015] [Indexed: 12/13/2022]
Abstract
Limb reduction malformations are highly heterogeneous in their clinical presentation and so, predicting the underlying mutation on a clinical basis can be challenging. Molecular karyotyping is a powerful genomic tool that has quickly become the mainstay for the study of children with malformation syndromes. We describe three patients with major limb reduction anomalies in whom pathogenic copy number variants were identified on molecular karyotyping. These include a patient with hypoplastic phalanges and absent hallux bilaterally with de novo deletion of 11.9 Mb on 7p21.1-22.1 spanning 63 genes including RAC1, another patient with severe Holt-Oram syndrome and a large de novo deletion 2.2 Mb on 12q24.13-24.21 spanning 20 genes including TBX3 and TBX5, and a third patient with acheiropodia who had a nullizygous deletion of 102 kb on 7q36.3 spanning LMBR1. We discuss the potential of these novel genomic rearrangements to improve our understanding of limb development in humans.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Specialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Heba Y El Khashab
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Pediatrics, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Al-Qattan
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haifa Alsedairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Southgate L, Sukalo M, Karountzos ASV, Taylor EJ, Collinson CS, Ruddy D, Snape KM, Dallapiccola B, Tolmie JL, Joss S, Brancati F, Digilio MC, Graul-Neumann LM, Salviati L, Coerdt W, Jacquemin E, Wuyts W, Zenker M, Machado RD, Trembath RC. Haploinsufficiency of the NOTCH1 Receptor as a Cause of Adams-Oliver Syndrome With Variable Cardiac Anomalies. ACTA ACUST UNITED AC 2015; 8:572-581. [PMID: 25963545 DOI: 10.1161/circgenetics.115.001086] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. METHODS AND RESULTS Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. CONCLUSIONS These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders.
Collapse
Affiliation(s)
- Laura Southgate
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom.,Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maja Sukalo
- Institute of Human Genetics, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Edward J Taylor
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Claire S Collinson
- Division of Genetics & Molecular Medicine, King's College London, Faculty of Life Sciences & Medicine, Guy's Hospital, London, United Kingdom
| | - Deborah Ruddy
- Department of Clinical Genetics, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie M Snape
- Department of Clinical Genetics, South West Thames Regional Genetics Service, St George's Healthcare NHS Trust, London, United Kingdom
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - John L Tolmie
- South West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow, United Kingdom
| | - Shelagh Joss
- South West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow, United Kingdom
| | - Francesco Brancati
- Department of Medical, Oral & Biotechnological Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman & Child Health, University of Padova, Padova, Italy
| | - Wiltrud Coerdt
- Institute of Human Genetics, Mainz University Medical Center, Mainz, Germany
| | - Emmanuel Jacquemin
- Pediatric Hepatology & Liver Transplantation Unit, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Hepatinov, Le Kremlin Bicêtre, France.,Inserm U1174, University Paris-Sud 11, Orsay, France
| | - Wim Wuyts
- Department of Medical Genetics, University & University Hospital of Antwerp, Edegem, Belgium
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Magdeburg, Germany
| | - Rajiv D Machado
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Richard C Trembath
- Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Clinical Genetics, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
18
|
Sukalo M, Tilsen F, Kayserili H, Müller D, Tüysüz B, Ruddy DM, Wakeling E, Ørstavik KH, Snape KM, Trembath R, De Smedt M, van der Aa N, Skalej M, Mundlos S, Wuyts W, Southgate L, Zenker M. DOCK6 mutations are responsible for a distinct autosomal-recessive variant of Adams-Oliver syndrome associated with brain and eye anomalies. Hum Mutat 2015; 36:593-8. [PMID: 25824905 DOI: 10.1002/humu.22795] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022]
Abstract
Adams-Oliver syndrome (AOS) is characterized by the association of aplasia cutis congenita with terminal transverse limb defects, often accompanied by additional cardiovascular or neurological features. Both autosomal-dominant and autosomal-recessive disease transmission have been observed, with recent gene discoveries indicating extensive genetic heterogeneity. Mutations of the DOCK6 gene were first described in autosomal-recessive cases of AOS and only five DOCK6-related families have been reported to date. Recently, a second type of autosomal-recessive AOS has been attributed to EOGT mutations in three consanguineous families. Here, we describe the identification of 13 DOCK6 mutations, the majority of which are novel, across 10 unrelated individuals from a large cohort comprising 47 sporadic cases and 31 AOS pedigrees suggestive of autosomal-recessive inheritance. DOCK6 mutations were strongly associated with structural brain abnormalities, ocular anomalies, and intellectual disability, thus suggesting that DOCK6-linked disease represents a variant of AOS with a particularly poor prognosis.
Collapse
Affiliation(s)
- Maja Sukalo
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Felix Tilsen
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul, Turkey.,Medical Genetics Department, School of Medicine, Koc University, Istanbul, Turkey
| | - Dietmar Müller
- Institut für Medizinische Genetik, Klinikum Chemnitz, Chemnitz, Germany
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University, Istanbul, Turkey
| | | | - Emma Wakeling
- North West Thames Regional Genetics Service, North West London Hospitals NHS Trust, Harrow, UK
| | | | - Katie M Snape
- Department of Clinical Genetics, St. George's Healthcare NHS Trust, London, UK
| | - Richard Trembath
- Department of Clinical Genetics, Guy's Hospital, London, UK.,Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maryse De Smedt
- Department of Medical Genetics, Leuven University Hospital, Leuven, Belgium
| | - Nathalie van der Aa
- Department of Medical Genetics, Antwerp University Hospital, Antwerp, Belgium
| | - Martin Skalej
- Institute of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Stefan Mundlos
- Institute for Medical and Human Genetics Charité, Universitätsmedizin Berlin and Max Planck Institute for Molecular Genetics Berlin, Berlin, Germany
| | - Wim Wuyts
- Department of Medical Genetics, Antwerp University Hospital, Antwerp, Belgium.,Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Laura Southgate
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|