1
|
Ma Y, Liu X, Zhou M, Sun W, Jiang B, Liu Q, Wang M, Zou Y, Liu Q, Gong Y, Sun G. CUL4B mutations impair human cortical neurogenesis through PP2A-dependent inhibition of AKT and ERK. Cell Death Dis 2024; 15:121. [PMID: 38331954 PMCID: PMC10853546 DOI: 10.1038/s41419-024-06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mutation in CUL4B gene is one of the most common causes for X-linked intellectual disability (XLID). CUL4B is the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complex. While the roles of CUL4B in cancer progression and some developmental processes like adipogenesis, osteogenesis, and spermatogenesis have been studied, the mechanisms underlying the neurological disorders in patients with CUL4B mutations are poorly understood. Here, using 2D neuronal culture and cerebral organoids generated from the patient-derived induced pluripotent stem cells and their isogenic controls, we demonstrate that CUL4B is required to prevent premature cell cycle exit and precocious neuronal differentiation of neural progenitor cells. Moreover, loss-of-function mutations of CUL4B lead to increased synapse formation and enhanced neuronal excitability. Mechanistically, CRL4B complex represses transcription of PPP2R2B and PPP2R2C genes, which encode two isoforms of the regulatory subunit of protein phosphatase 2 A (PP2A) complex, through catalyzing monoubiquitination of H2AK119 in their promoter regions. CUL4B mutations result in upregulated PP2A activity, which causes inhibition of AKT and ERK, leading to premature cell cycle exit. Activation of AKT and ERK or inhibition of PP2A activity in CUL4B mutant organoids rescues the neurogenesis defect. Our work unveils an essential role of CUL4B in human cortical development.
Collapse
Affiliation(s)
- Yanyan Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaolin Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjie Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qiji Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
CUL4B-associated epilepsy: Report of a novel truncating variant promoting drug-resistant seizures and systematic review of the literature. Seizure 2023; 104:32-37. [PMID: 36476360 DOI: 10.1016/j.seizure.2022.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cabezas syndrome is a rare X-linked disease caused by mutations in CUL4B and characterized by developmental delay/intellectual disability, somatic dysmorphisms, behavioural disorder, ataxia/tremors. Although seizures have been formerly reported, their clinical semiology, EEG features and long-term outcome are largely unknown. PURPOSE This study aims to expand knowledge on epilepsy associated with Cabezas syndrome and to understand whether different types of variants in the CUL4B gene or brain MRI abnormalities may influence seizure onset and epilepsy course. METHODS With this in mind, we characterised the epileptic phenotype of a 17-year-old adolescent harbouring a CUL4B novel variant and performed a systematic literature review of CUL4B-associated seizures, analysing mutation types and neuroimaging features as epilepsy predictors. RESULTS Our case observation indicates that CUL4B-associated epilepsy may also be drug-resistant and persist beyond infancy. Literature analysis shows that 43% of CUL4B patients develop seizures, with no statistically significant differences in epilepsy development according to mutation type and neuroimaging features. CONCLUSION Our study extends knowledge of CUL4B-associated epilepsy, offering new insights into disease progression.
Collapse
|
3
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
4
|
López M, Pérez‐Grijalba V, García‐Cobaleda I, Domínguez‐Garrido E. A 22.5 kb deletion in CUL4B causing Cabezas syndrome identified using CNV approach from WES data. Clin Case Rep 2020; 8:3184-3188. [PMID: 33363903 PMCID: PMC7752442 DOI: 10.1002/ccr3.3381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/13/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Detecting clinical grade CNV based on WES is being improved in the NGS era.
Collapse
Affiliation(s)
- Maria López
- Molecular Diagnostics LaboratoryFundación Rioja SaludLogroñoSpain
| | | | - Inmaculada García‐Cobaleda
- Unidad de Diagnóstico y Asesoramiento GenéticoHospital Universitario Nuestra Sra de CandelariaSanta Cruz de TenerifeSpain
| | | |
Collapse
|
5
|
Ritelli M, Palagano E, Cinquina V, Beccagutti F, Chiarelli N, Strina D, Hall IF, Villa A, Sobacchi C, Colombi M. Genome-first approach for the characterization of a complex phenotype with combined NBAS and CUL4B deficiency. Bone 2020; 140:115571. [PMID: 32768688 DOI: 10.1016/j.bone.2020.115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022]
Abstract
Biallelic variants in neuroblastoma-amplified sequence (NBAS) cause an extremely broad spectrum of phenotypes. Clinical features range from isolated recurrent episodes of liver failure to multisystemic syndrome including short stature, skeletal osteopenia and dysplasia, optic atrophy, and a variable immunological, cutaneous, muscular, and neurological abnormalities. Hemizygous variants in CUL4B cause syndromic X-linked intellectual disability characterized by limitations in intellectual functions, developmental delays in gait, cognitive, and speech functioning, and other features including short stature, dysmorphism, and cerebral malformations. In this study, we report on a 4.5-month-old preterm infant with a complex phenotype mainly characterized by placental-related severe intrauterine growth restriction, post-natal growth failure with spontaneous bone fractures, which led to a suspicion of osteogenesis imperfecta, and lethal bronchopulmonary dysplasia with pulmonary hypertension. Whole exome sequencing identified compound heterozygosity for a known frameshift and a novel missense variant in NBAS and hemizygosity for a known CUL4B nonsense mutation. In vitro functional studies on the novel NBAS missense substitution demonstrated altered Golgi-to-endoplasmic reticulum retrograde vesicular trafficking and reduced collagen secretion, likely explaining part of the patient's phenotype. We also provided a comprehensive overview of the phenotypic features of NBAS and CUL4B deficiency, thus updating the recently emerging NBAS genotype-phenotype correlations. Our findings highlight the power of a genome-first approach for an early diagnosis of complex phenotypes.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Beccagutti
- Fondazione Poliambulanza, Department of Neonatal Intensive Care, 25124 Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | | | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
6
|
The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder. Mol Neurobiol 2020; 57:2179-2193. [DOI: 10.1007/s12035-020-01881-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
|
7
|
Weissbach S, Reinert MC, Altmüller J, Krätzner R, Thiele H, Rosenbaum T, Nürnberg P, Gärtner J. A new CUL4B variant associated with a mild phenotype and an exceptional pattern of leukoencephalopathy. Am J Med Genet A 2017; 173:2803-2807. [PMID: 28817236 DOI: 10.1002/ajmg.a.38390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 11/07/2022]
Abstract
Cabezas type of X-linked syndromic intellectual disability (MRXSC; MIM300354) is a rare X-linked recessive intellectual disability characterized primarily by intellectual disability, short stature, hypogonadism, and gait abnormalities. It is caused by a wide spectrum of hemizygous variants in CUL4B. In a 10-year-old boy with an exceptional leukoencephalopathy pattern, we identified a new missense variant p.Leu329Gln in CUL4B using "Mendeliome" sequencing. However, his phenotype does not include the severe characteristics currently known for MRXSC. We discuss the divergent phenotype and propose a potential connection between the different CUL4B variants and corresponding phenotypes in the context of the current literature as well as 3D homology modeling.
Collapse
Affiliation(s)
- Susann Weissbach
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Marie-Christine Reinert
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ralph Krätzner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Holger Thiele
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thorsten Rosenbaum
- Department of Pediatrics and Adolescent Medicine, Sana Hospitals Duisburg, Duisburg, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection. Hum Genome Var 2017; 4:16045. [PMID: 28144446 PMCID: PMC5243919 DOI: 10.1038/hgv.2016.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome.
Collapse
|
9
|
Del Prete D, Rice RC, Rajadhyaksha AM, D'Adamio L. Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration. J Biol Chem 2016; 291:17209-27. [PMID: 27325702 DOI: 10.1074/jbc.m116.733626] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/23/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause Alzheimer disease, plays an important in vivo role and facilitates transmitter release. Because the APP cytosolic region (ACR) is essential for these functions, we have characterized its brain interactome. We found that the ACR interacts with proteins that regulate the ubiquitin-proteasome system, predominantly with the E3 ubiquitin-protein ligases Stub1, which binds the NH2 terminus of the ACR, and CRL4(CRBN), which is formed by Cul4a/b, Ddb1, and Crbn, and interacts with the COOH terminus of the ACR via Crbn. APP shares essential functions with APP-like protein-2 (APLP2) but not APP-like protein-1 (APLP1). Noteworthy, APLP2, but not APLP1, interacts with Stub1 and CRL4(CRBN), pointing to a functional pathway shared only by APP and APLP2. In vitro ubiquitination/ubiquitome analysis indicates that these E3 ligases are enzymatically active and ubiquitinate the ACR residues Lys(649/650/651/676/688) Deletion of Crbn reduces ubiquitination of Lys(676) suggesting that Lys(676) is physiologically ubiquitinated by CRL4(CRBN) The ACR facilitated in vitro ubiquitination of presynaptic proteins that regulate exocytosis, suggesting a mechanism by which APP tunes transmitter release. Other dementia-related proteins, namely Tau and apoE, interact with and are ubiquitinated via the ACR in vitro This, and the evidence that CRBN and CUL4B are linked to intellectual disability, prompts us to hypothesize a pathogenic mechanism, in which APP acts as a modulator of E3 ubiquitin-protein ligase(s), shared by distinct neuronal disorders. The well described accumulation of ubiquitinated protein inclusions in neurodegenerative diseases and the link between the ubiquitin-proteasome system and neurodegeneration make this concept plausible.
Collapse
Affiliation(s)
- Dolores Del Prete
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Richard C Rice
- the Division of Pediatric Neurology, Department of Pediatrics, and
| | - Anjali M Rajadhyaksha
- the Division of Pediatric Neurology, Department of Pediatrics, and Feil Family Brain and Mind Research Institute, Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065
| | - Luciano D'Adamio
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
10
|
Ivakhnitskaia E, Hamada K, Chang C. Timing mechanisms in neuronal pathfinding, synaptic reorganization, and neuronal regeneration. Dev Growth Differ 2016; 58:88-93. [PMID: 26748770 DOI: 10.1111/dgd.12259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023]
Abstract
Precise temporal control of neuro differentiation and post-differentiation events are necessary for the creation of appropriate wiring diagram in the brain. To make advances in the treatment of neurodevelopmental and neurodegenerative disorders, and traumatic brain injury, it is important to understand these mechanisms. Caenorhabditis elegans has emerged as a revolutionary tool for the study of neural circuits due to its genetic homology to vertebrates and ease of genetic manipulation. microRNA (miRNA), a ubiquitous class of small non-coding RNA, that inhibits the expression of target genes, has emerged as an important timing control molecule through research conducted on C. elegans. This review will focus on the temporal control of neurodifferentiation and post-differentiation events exerted by two conserved miRNAs, lin-4 and let-7. We summarize recent findings on the role of lin-4 as a timing regulator controlling transition of sequential events in neuronal pathfinding and synaptic remodeling, and the role of let-7 as a timing regulator that limits the regeneration potential of post-differentiated AVM neurons as they age.
Collapse
Affiliation(s)
- Evguenia Ivakhnitskaia
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kana Hamada
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
11
|
Vulto-van Silfhout AT, Nakagawa T, Bahi-Buisson N, Haas SA, Hu H, Bienek M, Vissers LELM, Gilissen C, Tzschach A, Busche A, Müsebeck J, Rump P, Mathijssen IB, Avela K, Somer M, Doagu F, Philips AK, Rauch A, Baumer A, Voesenek K, Poirier K, Vigneron J, Amram D, Odent S, Nawara M, Obersztyn E, Lenart J, Charzewska A, Lebrun N, Fischer U, Nillesen WM, Yntema HG, Järvelä I, Ropers HH, de Vries BBA, Brunner HG, van Bokhoven H, Raymond FL, Willemsen MAAP, Chelly J, Xiong Y, Barkovich AJ, Kalscheuer VM, Kleefstra T, de Brouwer APM. Variants in CUL4B are associated with cerebral malformations. Hum Mutat 2015; 36:106-17. [PMID: 25385192 DOI: 10.1002/humu.22718] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/17/2014] [Indexed: 11/08/2022]
Abstract
Variants in cullin 4B (CUL4B) are a known cause of syndromic X-linked intellectual disability. Here, we describe an additional 25 patients from 11 families with variants in CUL4B. We identified nine different novel variants in these families and confirmed the pathogenicity of all nontruncating variants. Neuroimaging data, available for 15 patients, showed the presence of cerebral malformations in ten patients. The cerebral anomalies comprised malformations of cortical development (MCD), ventriculomegaly, and diminished white matter volume. The phenotypic heterogeneity of the cerebral malformations might result from the involvement of CUL-4B in various cellular pathways essential for normal brain development. Accordingly, we show that CUL-4B interacts with WDR62, a protein in which variants were previously identified in patients with microcephaly and a wide range of MCD. This interaction might contribute to the development of cerebral malformations in patients with variants in CUL4B.
Collapse
Affiliation(s)
- Anneke T Vulto-van Silfhout
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015; 573:33-45. [PMID: 26344709 DOI: 10.1016/j.gene.2015.08.064] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023]
Abstract
The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| | - Pengbo Zhou
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| |
Collapse
|