1
|
Geoffroy V, Guignard T, Kress A, Gaillard JB, Solli-Nowlan T, Schalk A, Gatinois V, Dollfus H, Scheidecker S, Muller J. AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis. Nucleic Acids Res 2021; 49:W21-W28. [PMID: 34023905 PMCID: PMC8262758 DOI: 10.1093/nar/gkab402] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
With the dramatic increase of pangenomic analysis, Human geneticists have generated large amount of genomic data including millions of small variants (SNV/indel) but also thousands of structural variations (SV) mainly from next-generation sequencing and array-based techniques. While the identification of the complete SV repertoire of a patient is getting possible, the interpretation of each SV remains challenging. To help identifying human pathogenic SV, we have developed a web server dedicated to their annotation and ranking (AnnotSV) as well as their visualization and interpretation (knotAnnotSV) freely available at the following address: https://www.lbgi.fr/AnnotSV/. A large amount of annotations from >20 sources is integrated in our web server including among others genes, haploinsufficiency, triplosensitivity, regulatory elements, known pathogenic or benign genomic regions, phenotypic data. An ACMG/ClinGen compliant prioritization module allows the scoring and the ranking of SV into 5 SV classes from pathogenic to benign. Finally, the visualization interface displays the annotated SV in an interactive way including popups, search fields, filtering options, advanced colouring to highlight pathogenic SV and hyperlinks to the UCSC genome browser or other public databases. This web server is designed for diagnostic and research analysis by providing important resources to the user.
Collapse
Affiliation(s)
- Véronique Geoffroy
- Laboratoire de Génétique Médicale, U1112, INSERM, IGMA, FMTS, Université de Strasbourg, Strasbourg, France
| | | | - Arnaud Kress
- Complex Systems and Translational Bioinformatics, ICube, UMR 7357, University of Strasbourg, CNRS, FMTS, Strasbourg, France
| | | | - Tor Solli-Nowlan
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Audrey Schalk
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Hélène Dollfus
- Laboratoire de Génétique Médicale, U1112, INSERM, IGMA, FMTS, Université de Strasbourg, Strasbourg, France
- Centre de référence pour les Affections Rares en Génétique Ophtalmologique, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, U1112, INSERM, IGMA, FMTS, Université de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, U1112, INSERM, IGMA, FMTS, Université de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, IGMA, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Varadarajan S, Balaji TM, Raj AT, Gupta AA, Patil S, Alhazmi TH, Alaqi HAA, Al Omar NEM, Almutaher SABA, Jafer AA, Hedad IA. Genetic Mutations Associated with Pierre Robin Syndrome/Sequence: A Systematic Review. Mol Syndromol 2021; 12:69-86. [PMID: 34012376 DOI: 10.1159/000513217] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023] Open
Abstract
Pierre Robin syndrome/sequence (PRS) is associated with a triad of symptoms that includes micrognathia, cleft palate, and glossoptosis that may lead to respiratory obstruction. The syndrome occurs in 2 forms: nonsyndromic PRS (nsPRS), and PRS associated with other syndromes (sPRS). Studies have shown varying genetic mutations associated with both nsPRS and sPRS. The present systematic review aims to provide a comprehensive collection of published literature reporting genetic mutations in PRS. Web of Science, PubMed, and Scopus were searched using the keywords: "Pierre Robin syndrome/sequence AND gene mutation." The search resulted in 208 articles, of which 93 were excluded as they were duplicates/irrelevant. The full-text assessment led to the further exclusion of 76 articles. From the remaining 39 articles included in the review, details of 324 cases were extracted. 56% of the cases were sPRS, and 22% of the cases were associated with other malformations and the remaining were nsPRS. Genetic mutations were noted in 30.9% of the 300 cases. Based on the review, SOX9 was found to be the most common gene associated with both nsPRS and sPRS. The gene mutation in sPRS was specific to the associated syndrome. Due to the lack of original studies, a quantitative analysis was not possible. Thus, future studies must focus on conducting large-scale cohort studies. Along with generating data on genetic mutation, future studies must also conduct pedigree analysis to assess potential familial inheritance, which in turn could provide valuable insights into the etiopathogenesis of PRS.
Collapse
Affiliation(s)
- Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | | | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Archana A Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Tariq Hassan Alhazmi
- Community Dental Unit, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | - Neda Essa M Al Omar
- Community Dental Unit, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | - Ismaeel Abker Hedad
- Community Dental Unit, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Motch Perrine SM, Wu M, Holmes G, Bjork BC, Jabs EW, Richtsmeier JT. Phenotypes, Developmental Basis, and Genetics of Pierre Robin Complex. J Dev Biol 2020; 8:E30. [PMID: 33291480 PMCID: PMC7768358 DOI: 10.3390/jdb8040030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The phenotype currently accepted as Pierre Robin syndrome/sequence/anomalad/complex (PR) is characterized by mandibular dysmorphology, glossoptosis, respiratory obstruction, and in some cases, cleft palate. A causative sequence of developmental events is hypothesized for PR, but few clear causal relationships between discovered genetic variants, dysregulated gene expression, precise cellular processes, pathogenesis, and PR-associated anomalies are documented. This review presents the current understanding of PR phenotypes, the proposed pathogenetic processes underlying them, select genes associated with PR, and available animal models that could be used to better understand the genetic basis and phenotypic variation of PR.
Collapse
Affiliation(s)
- Susan M. Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Bryan C. Bjork
- Department of Biochemistry and Molecular Genetics, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.W.); (G.H.); (E.W.J.)
| | - Joan T. Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Hancarova M, Malikova M, Kotrova M, Drabova J, Trkova M, Sedlacek Z. Association of 17q24.2-q24.3 deletions with recognizable phenotype and short telomeres. Am J Med Genet A 2018; 176:1438-1442. [PMID: 29696806 DOI: 10.1002/ajmg.a.38711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 02/02/2023]
Abstract
Microdeletions of 17q24.2-q24.3 have been described in several patients with developmental and speech delay, growth retardation, and other features. The relatively large size and limited overlap of the deletions complicate the genotype-phenotype correlation. We identified a girl with intellectual disability, growth retardation, dysmorphic features, and a de novo 2.8 Mb long deletion of 17q24.2-q24.3. Her phenotype was strikingly similar to one previously described boy with Dubowitz syndrome (MIM 223370) and a de novo 3.9 Mb long deletion encompassing the deletion of our patient. In addition, both patients had the shortest telomeres among normal age-matched controls. Our review of all 17q24.2-q24.3 deletion patients revealed additional remarkable phenotypic features shared by the patients, some of which have consequences for their management. Proposed novel genotype-phenotype correlations based on new literature information on the region include the role of PSMD12 and BPTF, the genes recently associated with syndromic neurodevelopmental disorders, and a possible role of the complex topologically associated domain structure of the region, which may explain some of the phenotypic discrepancies observed between patients with similar but not identical deletions. Nevertheless, although different diagnoses including the Dubowitz, Nijmegen breakage (MIM 251260), Silver-Russell (MIM 180860), or Myhre (MIM 139210) syndromes were originally considered in the 17q24.2-q24.3 deletion patients, they clearly belong to one diagnostic entity defined by their deletions and characterized especially by developmental delay, specific facial dysmorphism, abnormalities of extremities and other phenotypes, and possibly also short telomere length.
Collapse
Affiliation(s)
- Miroslava Hancarova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Marcela Malikova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Michaela Kotrova
- CLIP, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jana Drabova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | | | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Thieme F, Ludwig K. The Role of Noncoding Genetic Variation in Isolated Orofacial Clefts. J Dent Res 2017; 96:1238-1247. [DOI: 10.1177/0022034517720403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the past decade, medical genetic research has generated multiple discoveries, many of which were obtained via genome-wide association studies (GWASs). A major GWAS finding is that the majority of risk variants for complex traits map to noncoding regions. This has resulted in a paradigm shift in terms of the interpretation of human genomic sequence variation, with more attention now being paid to what was previously termed “junk DNA.” Translation of genetic findings into biologically meaningful results requires 1) large-scale and cell-specific efforts to annotate non-protein–coding regions and 2) the integration of comprehensive genomic data sets. However, this represents an enormous challenge, particularly in the case of human traits that arise during embryonic development, such as orofacial clefts (OFCs). OFC is a multifactorial trait and ranks among the most common of all human congenital malformations. These 2 attributes apply in particular to its isolated forms (nonsyndromic OFC [nsOFC]). Although genetic studies (including GWASs) have yielded novel insights into the genetic architecture of nsOFC, few data are available concerning causality and affected biological pathways. Reasons for this deficiency include the complex genetic architecture at risk loci and the limited availability of functional data sets from human tissues that represent relevant embryonic sites and time points. The present review summarizes current knowledge of the role of noncoding regions in nsOFC etiology. We describe the identification of genetic risk factors for nsOFC and several of the approaches used to identify causal variants at these loci. These strategies include the use of biological and genetic information from public databases, the assessment of the full spectrum of genetic variability within 1 locus, and comprehensive in vitro and in vivo experiments. This review also highlights the role of the emerging research field “functional genomics” and its increasing contribution to our biological understanding of nsOFC.
Collapse
Affiliation(s)
- F. Thieme
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - K.U. Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Smyk M, Akdemir KC, Stankiewicz P. SOX9 chromatin folding domains correlate with its real and putative distant cis-regulatory elements. Nucleus 2017; 8:182-187. [PMID: 28085555 DOI: 10.1080/19491034.2017.1279776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Evolutionary conserved transcription factor SOX9, encoded by the dosage sensitive SOX9 gene on chromosome 17q24.3, plays an important role in development of multiple organs, including bones and testes. Heterozygous point mutations and genomic copy-number variant (CNV) deletions involving SOX9 have been reported in patients with campomelic dysplasia (CD), a skeletal malformation syndrome often associated with male-to-female sex reversal. Balanced and unbalanced structural genomic variants with breakpoints mapping up to 1.3 Mb up- and downstream to SOX9 have been described in patients with milder phenotypes, including acampomelic campomelic dysplasia, sex reversal, and Pierre Robin sequence. Based on the localization of breakpoints of genomic rearrangements causing different phenotypes, 5 genomic intervals mapping upstream to SOX9 have been defined. We have analyzed the publically available database of high-throughput chromosome conformation capture (Hi-C) in multiple cell lines in the genomic regions flanking SOX9. Consistent with the literature data, chromatin domain boundaries in the SOX9 locus exhibit conservation across species and remain largely constant across multiple cell types. Interestingly, we have found that chromatin folding domains in the SOX9 locus associate with the genomic intervals harboring real and putative regulatory elements of SOX9, implicating that variation in intra-domain interactions may be critical for dynamic regulation of SOX9 expression in a cell type-specific fashion. We propose that tissue-specific enhancers for other transcription factor genes may similarly utilize chromatin folding sub-domains in gene regulation.
Collapse
Affiliation(s)
- Marta Smyk
- a Department of Medical Genetics , Institute of Mother and Child , Warsaw , Poland
| | - Kadir Caner Akdemir
- b Genomic Medicine Department , MD Anderson Cancer Center , Houston , TX , USA
| | - Paweł Stankiewicz
- c Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
7
|
Xu JX, Kilpatrick N, Baker NL, Penington A, Farlie PG, Tan TY. Clinical and Molecular Characterisation of Children with Pierre Robin Sequence and Additional Anomalies. Mol Syndromol 2016; 7:322-328. [PMID: 27920635 DOI: 10.1159/000449115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 12/21/2022] Open
Abstract
Pierre Robin Sequence (PRS) is usually classified into syndromic and nonsyndromic groups, with a further subclassification of the nonsyndromic group into isolated PRS and PRS with additional anomalies (PRS-Plus). The aim of this research is to provide an accurate phenotypic characterisation of nonsyndromic PRS, specifically the PRS-Plus subgroup. We sought to examine the frequency of sequence variants in previously defined conserved noncoding elements (CNEs) in the putative enhancer region upstream of SOX9, the regulation of which has been associated with PRS phenotypes. We identified 141 children with nonsyndromic PRS at the Royal Children's Hospital, Melbourne from 1985 to 2012 using 2 databases. Clinical and demographic data were extracted by file review and children categorized as 'isolated PRS' or 'PRS-Plus'. A subset of children with PRS-Plus was selected for detailed phenotyping and DNA sequencing of the upstream SOX9 CNEs. We found 83 children with isolated PRS and 58 with PRS-Plus. The most common PRS-Plus malformations involved the musculoskeletal and ocular systems. The most common coexisting craniofacial malformation was choanal stenosis/atresia. We identified 10 children with a family history of PRS or cleft palate. We found a single nucleotide substitution in a putative GATA1-binding site in one patient, but it was inherited from his phenotypically unaffected mother. PRS-Plus represents a broad phenotypic spectrum with uncertain pathogenesis. Dysmorphology assessment by a clinical geneticist is recommended. SOX9 CNE sequence variants are rare in our cohort and are unlikely to play a significant role in the pathogenesis of PRS-Plus.
Collapse
Affiliation(s)
- Jessie X Xu
- Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Vic., Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Nicky Kilpatrick
- Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Vic., Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia; Royal Children's Hospital, Melbourne, Vic., Australia
| | - Naomi L Baker
- Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Anthony Penington
- Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Vic., Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia; Royal Children's Hospital, Melbourne, Vic., Australia
| | - Peter G Farlie
- Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Vic., Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Tiong Yang Tan
- Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Vic., Australia; Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia; Royal Children's Hospital, Melbourne, Vic., Australia; Victorian Clinical Genetics Services, Melbourne, Vic., Australia
| |
Collapse
|
8
|
Castori M, Bottillo I, Morlino S, Barone C, Cascone P, Grammatico P, Laino L. Variability in a three-generation family with Pierre Robin sequence, acampomelic campomelic dysplasia, and intellectual disability due to a novel ∼1 Mb deletion upstream of SOX9, and including KCNJ2 and KCNJ16. ACTA ACUST UNITED AC 2015; 106:61-8. [PMID: 26663529 DOI: 10.1002/bdra.23463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Campomelic dysplasia and acampomelic campomelic dysplasia (ACD) are allelic disorders due to heterozygous mutations in or around SOX9. Translocations and deletions involving the SOX9 5' regulatory region are rare causes of these disorders, as well as Pierre Robin sequence (PRS) and 46,XY gonadal dysgenesis. Genotype-phenotype correlations are not straightforward due to the complex epigenetic regulation of SOX9 expression during development. METHODS We report a three-generation pedigree with a novel ∼1 Mb deletion upstream of SOX9 and including KCNJ2 and KCNJ16, and ascertained for dominant transmission of PRS. RESULTS Further characterization of the family identified subtle appendicular anomalies and a variable constellation of axial skeletal features evocative of ACD in several members. Affected males showed learning disability. CONCLUSION The identified deletion was smaller than all other chromosome rearrangements associated with ACD. Comparison with other reported translocations and deletions involving this region allowed further refining of genotype-phenotype correlations and an update of the smallest regions of overlap associated with the different phenotypes. Intrafamilial variability in this pedigree suggests a phenotypic continuity between ACD and PRS in patients carrying mutations in the SOX9 5' regulatory region.
Collapse
Affiliation(s)
- Marco Castori
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Chiara Barone
- Center for Genetic Counseling and Reproductive Teratology, Maternal and Child Health Department, Garibaldi Nesima Hospital, Catania, Italy
| | - Piero Cascone
- Division of Maxillo-Facial Surgery, Sapienza University, Policlinico Umberto I Hospital, Rome, Italy
| | | | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Luigi Laino
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|