1
|
Gerashchenko T, Skitchenko R, Korobeynikova A, Kuanysheva K, Khozyainova A, Vorobiev R, Rodionov E, Miller S, Topolnitsky E, Shefer N, Anisimenko M, Zhuikova L, Vashisth M, Pankova O, Perelmuter V, Rezapova V, Artomov M, Denisov E. Whole-exome sequencing reveals an association of rs112065068 in TGOLN2 gene with distant metastasis of non-small cell lung cancer. Gene 2024; 920:148507. [PMID: 38670394 DOI: 10.1016/j.gene.2024.148507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Early prediction and prevention of recurring illness is critical for improving the survival rates of patients with non-small cell lung cancer (NSCLC). Previously, we demonstrated that the presence of premalignant epithelial changes in the small bronchi distant to the primary tumor is associated with NSCLC progression: isolated basal cell hyperplasia (iBCH) indicates a high risk of distant metastasis, BCH combined with squamous metaplasia (BCHSM) - a high risk of locoregional recurrence. Here, we aimed to identify germline single nucleotide variants (SNVs) and insertions and deletions (InDels) associated with distant metastasis and locoregional recurrence in cases with iBCH and BCHSM using whole-exome sequencing of 172 NSCLC patients. The rs112065068 of the TGOLN2 gene was identified only in iBCH patients and was associated with a high risk of distant metastasis (P < .001) and worse metastasis-free survival (HR = 4.19 (95 %CI 1.97-8.93); P < .001). This variant was validated in a group of 109 NSCLC patients using real-time PCR and Sanger sequencing analyses. To our knowledge, this study is the first to identify a germline variant associated with NSCLC distant metastasis.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia; Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | | | - Anastasia Korobeynikova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia; Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Kristina Kuanysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Anna Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Rostislav Vorobiev
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Evgeny Rodionov
- Department of Thoracic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Sergey Miller
- Department of Thoracic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Evgeny Topolnitsky
- Department of Surgery with a Course of Mobilization Training and Disaster Medicine, Siberian State Medical University, Moskovskiy Tract 2, Tomsk 634050, Russia
| | - Nikolay Shefer
- Department of Surgery with a Course of Mobilization Training and Disaster Medicine, Siberian State Medical University, Moskovskiy Tract 2, Tomsk 634050, Russia
| | - Maxim Anisimenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentieva Ave. 10, Novosibirsk 630090, Russia
| | - Lilia Zhuikova
- Laboratory of Epidemiology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Mrinal Vashisth
- Tomsk State University, Lenina Ave. 36, Tomsk 634050, Russia
| | - Olga Pankova
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Vladimir Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia
| | - Valeria Rezapova
- ITMO, Kronverksky Pr. 49, Bldg. A, St. Petersburg, 197101, Russia; University Cote D'Azur, Grand Château 28 Avenue de Valrose, Nice 06103, France
| | - Mykyta Artomov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia; Laboratory of Single Cell Biology, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia.
| |
Collapse
|
2
|
Ding Y, Shi Y, Wang L, Li G, Osman RA, Sun J, Qian L, Zheng G, Zhang G. Potential biomarkers identified by tandem mass tags based quantitative proteomics for diagnosis and classification of Guillain-Barré syndrome. Eur J Neurol 2021; 29:1155-1164. [PMID: 34913222 DOI: 10.1111/ene.15213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Guillain-Barré syndrome (GBS) is an acute inflammatory autoimmune and demyelinating disease of the peripheral nervous system. Currently, valid biomarkers are unavailable for the diagnosis of GBS. METHODS A comparative proteomics analysis was performed on the cerebrospinal fluid (CSF) from 10 patients with GBS and 10 patients with noninflammatory neurological disease (NND) using the tandem mass tags technique. The differentially expressed proteins were analyzed by bioinformatics, and then the candidate proteins were validated by the enzyme-linked immunosorbent assay method in another cohort containing 160 samples (paired CSF and plasma of 40 patients with GBS, CSF of 40 NND patients and plasma of 40 healthy individuals). RESULTS In all, 298 proteins were successfully identified in the CSF samples, of which 97 differentially expressed proteins were identified in the GBS and NND groups. Three key molecules were identified as candidate molecules for further validation. The CSF levels of TGOLN2 and NCAM1 decreased in GBS patients compared with NND patients, whereas the CSF levels of APOC3 increased. The enzyme-linked immunosorbent assay results were consistent with our proteomics analysis. Interestingly, in the validation cohort, serum APOC3 levels in the GBS group were consistent with those in the CSF samples and significantly higher than those in the healthy control group. CONCLUSIONS Our preliminary data suggest that the CSF protein expression profile of patients with GBS is different from that of patients with NND. Moreover, alterations of TGOLN2, NCAM1and APOC3 may be used as novel biomarkers for identifying patients with GBS.
Collapse
Affiliation(s)
- Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yijun Shi
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijuan Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoge Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rasha Alsamani Osman
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China
| | - Jialu Sun
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingye Qian
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanghui Zheng
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| |
Collapse
|
3
|
Sokolowski M, Wasserman J, Wasserman D. An overview of the neurobiology of suicidal behaviors as one meta-system. Mol Psychiatry 2015; 20:56-71. [PMID: 25178164 DOI: 10.1038/mp.2014.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/19/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
Suicidal behaviors (SB) may be regarded as the outmost consequence of mental illnesses, or as a distinct entity per se. Regardless, the consequences of SB are very large to both society and affected individuals. The path leading to SB is clearly a complex one involving interactions between the subject's biology and environmental influences throughout life. With the aim to generate a representative and diversified overview of the different neurobiological components hypothesized or shown implicated across the entire SB field up to date by any approach, we selected and compiled a list of 212 gene symbols from the literature. An increasing number of novel gene (products) have been introduced as candidates, with half being implicated in SB in only the last 4 years. These candidates represent different neuro systems and functions and might therefore be regarded as competing or redundant explanations. We then adopted a unifying approach by treating them all as parts of the same meta-system, using bioinformatic tools. We present a network of all components connected by physical protein-protein interactions (the SB interactome). We proceeded by exploring the differences between the highly connected core (~30% of the candidate genes) and its peripheral parts, observing more functional homogeneity at the core, with multiple signal transduction pathways and actin-interacting proteins connecting a subset of receptors in nerve cell compartments as well as development/morphology phenotypes and the stress-sensitive synaptic plasticity processes of long term potentiation/depression. We suggest that SB neurobiology might also be viewed as one meta-system and perhaps be explained as intrinsic unbalances acting within the core or as imbalances arising between core and specific peripheral components.
Collapse
Affiliation(s)
- M Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - J Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - D Wasserman
- 1] National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden [2] WHO Collaborating Centre for Research, Methods Development and Training in Suicide Prevention, Stockholm, Sweden
| |
Collapse
|
4
|
Bae SM, Lee YJ, Cho IH, Kim SJ, Im JS, Cho SJ. Risk factors for suicidal ideation of the general population. J Korean Med Sci 2013; 28:602-7. [PMID: 23579548 PMCID: PMC3617315 DOI: 10.3346/jkms.2013.28.4.602] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 01/30/2013] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to investigate risk factors of suicide ideation in general population. A total of 1,116 adults were sampled with randomization in an urban area. After excluding 116 participants due to incomplete answer, 1,000 participants (500 males; mean age 39.6 ± 11.6) completed self-report questionnaire including the Center for Epidemiologic Study Depression Scale (CES-D), the Beck Scale for Suicide Ideation (BSI), the Spielberger State-Trait Anger Expression Inventory (STAXI), the Barratt Impulsiveness Scale (BIS), and questions on weekday sleep duration. Results showed higher scores on the BSI were related with higher scores on the STAXI, CES-D, a family history of psychiatric illness, and short or long sleep duration (≤ 5 or ≥ 10 hr) (adjusted R (2) = 0.151, P < 0.001, P < 0.001, P = 0.001, and P = 0.008, respectively). The predictive power of the STAXI scores, the presence of psychiatric family history and short or long sleep duration was stronger in the high CES-D group with scores of 16 or higher (adjusted R (2) = 0.275, P < 0.001, P < 0.001, and P < 0.001, respectively). These findings suggest that suicide idea in general population may be related with the presence of family history for psychiatric illness, depressive mood, high anger and short or long sleep duration.
Collapse
Affiliation(s)
- Seung-Min Bae
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Korea
| | - Yu Jin Lee
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Korea
| | - In Hee Cho
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Korea
| | - Seog Ju Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Soo Im
- Department of Preventive Medicine, Gachon University, Incheon, Korea
| | - Seong-Jin Cho
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
5
|
Wu K, Hanna GL, Rosenberg DR, Arnold PD. The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol Biochem Behav 2011; 100:726-35. [PMID: 22024159 DOI: 10.1016/j.pbb.2011.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/23/2011] [Accepted: 10/03/2011] [Indexed: 01/16/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a common and often debilitating neuropsychiatric condition characterized by persistent intrusive thoughts (obsessions), repetitive ritualistic behaviors (compulsions) and excessive anxiety. While the neurobiology and etiology of OCD has not been fully elucidated, there is growing evidence that disrupted neurotransmission of glutamate within corticalstriatal-thalamocortical (CSTC) circuitry plays a role in OCD pathogenesis. This review summarizes the findings from neuroimaging, animal model, candidate gene and treatment studies in the context of glutamate signaling dysfunction in OCD. First, studies using magnetic resonance spectroscopy are reviewed demonstrating altered glutamate concentrations in the caudate and anterior cingulate cortex of patients with OCD. Second, knockout mouse models, particularly the DLGAP3 and Sltrk5 knockout mouse models, display remarkably similar phenotypes of compulsive grooming behavior associated with glutamate signaling dysfunction. Third, candidate gene studies have identified associations between variants in glutamate system genes and OCD, particularly for SLC1A1 which has been shown to be associated with OCD in five independent studies. This converging evidence for a role of glutamate in OCD has led to the development of novel treatment strategies involving glutamatergic compounds, particularly riluzole and memantine. We conclude the review by outlining a glutamate hypothesis for OCD, which we hope will inform further research into etiology and treatment for this severe neuropsychiatric condition.
Collapse
Affiliation(s)
- Ke Wu
- Program in Genetics and Genomic Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | | | | | | |
Collapse
|