1
|
Dahoun T, Trossbach SV, Brandon NJ, Korth C, Howes OD. The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Transl Psychiatry 2017; 7:e1015. [PMID: 28140405 PMCID: PMC5299392 DOI: 10.1038/tp.2016.282] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 12/21/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a gene known as a risk factor for mental illnesses possibly associated with dopamine impairments. DISC1 is a scaffold protein interacting with proteins involved in the dopamine system. Here we summarise the impact of DISC1 disruption on the dopamine system in animal models, considering its effects on presynaptic dopaminergic function (tyrosine hydroxylase levels, dopamine transporter levels, dopamine levels at baseline and after amphetamine administration) and postsynaptic dopaminergic function (dopamine D1 and D2 receptor levels, dopamine receptor-binding potential and locomotor activity after amphetamine administration). Our findings show that many but not all DISC1 models display (1) increased locomotion after amphetamine administration, (2) increased dopamine levels after amphetamine administration in the nucleus accumbens, and (3) inconsistent basal dopamine levels, dopamine receptor levels and binding potentials. There is also limited evidence for decreased tyrosine hydroxylase levels in the frontal cortex and increased dopamine transporter levels in the striatum but not nucleus accumbens, but these conclusions warrant further replication. The main dopaminergic findings are seen across different DISC1 models, providing convergent evidence that DISC1 has a role in regulating dopaminergic function. These results implicate dopaminergic dysregulation as a mechanism underlying the increased rate of schizophrenia seen in DISC1 variant carriers, and provide insights into how DISC1, and potentially DISC1-interacting proteins such as AKT and GSK-3, could be used as novel therapeutic targets for schizophrenia.
Collapse
Affiliation(s)
- T Dahoun
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK
- Department of the Institute of Clinical Sciences, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College-Hammersmith Hospital Campus, London, UK
| | - S V Trossbach
- Department of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - N J Brandon
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, R&D Boston, Waltham, MA, USA
| | - C Korth
- Department of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - O D Howes
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK
- Department of the Institute of Clinical Sciences, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College-Hammersmith Hospital Campus, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London, UK
| |
Collapse
|
2
|
Özerdem A, Ceylan D, Can G. Neurobiology of Risk for Bipolar Disorder. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2016; 3:315-329. [PMID: 27867834 PMCID: PMC5093194 DOI: 10.1007/s40501-016-0093-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness which follows a relapsing and remitting course and requires lifetime treatment. The lack of biological markers for BD is a major difficulty in clinical practice. Exploring multiple endophenotypes to fit in multivariate genetic models for BD is an important element in the process of finding tools to facilitate early diagnosis, early intervention, prevention of new episodes, and follow-up of treatment response in BD. Reviewing of studies on neuroimaging, neurocognition, and biochemical parameters in populations with high genetic risk for the illness can yield an integrative perspective on the neurobiology of risk for BD. The most up-to-date data reveals consistent deficits in executive function, response inhibition, verbal memory/learning, verbal fluency, and processing speed in risk groups for BD. Functional magnetic resonance imaging (fMRI) studies report alterations in the activity of the inferior frontal gyrus, medial prefrontal cortex, and limbic areas, particularly in the amygdala in unaffected first-degree relatives (FDR) of BD compared to healthy controls. Risk groups for BD also present altered immune and neurochemical modulation. Despite inconsistencies, accumulating data reveals cognitive and imaging markers for risk and to a less extent resilience of BD. Findings on neural modulation markers are preliminary and require further studies. Although the knowledge on the neurobiology of risk for BD has been inadequate to provide benefits for clinical practice, further studies on structural and functional changes in the brain, neurocognitive functioning, and neurochemical modulation have a potential to reveal biomarkers for risk and resilience for BD. Multimodal, multicenter, population-based studies with large sample size allowing for homogeneous subgroup analyses will immensely contribute to the elucidation of biological markers for risk for BD in an integrative model.
Collapse
Affiliation(s)
- Ayşegül Özerdem
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Deniz Ceylan
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
- Department of Psychiatry, Gümüşhane State Hospital, Gümüşhane, Turkey
| | - Güneş Can
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
3
|
|
4
|
Johnstone M, Maclean A, Heyrman L, Lenaerts AS, Nordin A, Nilsson LG, De Rijk P, Goossens D, Adolfsson R, St Clair DM, Hall J, Lawrie SM, McIntosh AM, Del-Favero J, Blackwood DHR, Pickard BS. Copy Number Variations in DISC1 and DISC1-Interacting Partners in Major Mental Illness. MOLECULAR NEUROPSYCHIATRY 2015; 1:175-190. [PMID: 27239468 PMCID: PMC4872463 DOI: 10.1159/000438788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023]
Abstract
Robust statistical, genetic and functional evidence supports a role for DISC1 in the aetiology of major mental illness. Furthermore, many of its protein-binding partners show evidence for involvement in the pathophysiology of a range of neurodevelopmental and psychiatric disorders. Copy number variants (CNVs) are suspected to play an important causal role in these disorders. In this study, CNV analysis of DISC1 and its binding partners PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish population-based samples was carried out using multiplex amplicon quantification. Here, we report the finding of rare CNVs in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including the overlapping MYH10 gene) and CIT. Our findings provide further evidence for involvement of DISC1 and its interaction partners in neuropsychiatric disorders and also for a role of structural variants in the aetiology of these devastating diseases.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alan Maclean
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lien Heyrman
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - An-Sofie Lenaerts
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Annelie Nordin
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | | | - Peter De Rijk
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Dirk Goossens
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - David M St Clair
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeremy Hall
- Neurosciences & Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jurgen Del-Favero
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Douglas H R Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
5
|
Whalley HC, Dimitrova R, Sprooten E, Dauvermann MR, Romaniuk L, Duff B, Watson AR, Moorhead B, Bastin M, Semple SI, Giles S, Hall J, Thomson P, Roberts N, Hughes ZA, Brandon NJ, Dunlop J, Whitcher B, Blackwood DHR, McIntosh AM, Lawrie SM. Effects of a Balanced Translocation between Chromosomes 1 and 11 Disrupting the DISC1 Locus on White Matter Integrity. PLoS One 2015; 10:e0130900. [PMID: 26102360 PMCID: PMC4477898 DOI: 10.1371/journal.pone.0130900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022] Open
Abstract
Objective Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3). Method Within the original pedigree, we examined the effects of the t(1;11) translocation on white matter integrity, measured by fractional anisotropy (FA). This included family members with (n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients with psychosis (n = 34), and a group of healthy controls (n = 33). Results We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity. Conclusions We demonstrate that the t(1;11) translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis.
Collapse
MESH Headings
- Adolescent
- Adult
- Bipolar Disorder/genetics
- Bipolar Disorder/pathology
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- Corpus Callosum/pathology
- Cyclothymic Disorder/genetics
- Cyclothymic Disorder/pathology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Diffusion Tensor Imaging
- Exons/genetics
- Female
- Humans
- Male
- Middle Aged
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Schizophrenia/genetics
- Schizophrenia/pathology
- Severity of Illness Index
- Translocation, Genetic
- White Matter/pathology
- Young Adult
Collapse
Affiliation(s)
- Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Rali Dimitrova
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Centre for the Developing Brain, St Thomas’ Hospital, King’s College London, London, United Kingdom
| | - Emma Sprooten
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| | - Maria R. Dauvermann
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- McGovern Institute for Brain Research, Cambridge, MA, United States of America
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara Duff
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew R. Watson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Bill Moorhead
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Bastin
- Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott I. Semple
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy Hall
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Pippa Thomson
- Department of Medical Genetics, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Roberts
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Zoe A. Hughes
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, United States of America
| | - Nick J. Brandon
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, United States of America
- Current affiliation: AstraZeneca Neuroscience IMED, Cambridge, MA, United States of America
| | - John Dunlop
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, United States of America
- Current affiliation: AstraZeneca Neuroscience IMED, Cambridge, MA, United States of America
| | - Brandon Whitcher
- Clinical and Translational Imaging, Pfizer Inc, Cambridge, MA, United States of America
| | | | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Delvecchio G, Dima D, Frangou S. The effect of ANK3 bipolar-risk polymorphisms on the working memory circuitry differs between loci and according to risk-status for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:188-96. [PMID: 25711502 DOI: 10.1002/ajmg.b.32294] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polymorphisms at the rs10994336 and rs9804190 loci of the Ankyrin 3 (ANK3) gene have been strongly associated with increased risk for bipolar disorder (BD). However, their potential pathogenetic effect on BD-relevant neural circuits remains unknown. We examined the effect of BD-risk polymorphisms at rs10994336 and rs9804190 on the working memory (WM) circuit using functional magnetic resonance imaging (fMRI) data obtained from euthymic patients with BD (n = 41), their psychiatrically healthy first-degree relatives (n = 25) and unrelated individuals without personal or family history of psychiatric disorders (n = 46) while performing the N-back task. In unrelated healthy individuals, the rs10994336-risk-allele was associated with reduced activation of the ventral visual cortical components of the WM circuit while the rs9804190-risk-allele was associated with inefficient hyperactivation of the prefrontal cortical components of the WM. In patients and their healthy relatives, risk alleles at either loci were associated with hyperactivation in the ventral anterior cingulate cortex. Additionally, Rs9804190-risk-allele carriers with BD evidenced abnormal hyperactivation within the posterior cingulate cortex. This study provides new insights on the neurogenetic correlates of allelic variation at different genome-wide supported BD-risk associated ANK3 loci that support their involvement in BD and highlight the modulatory influence of increased background genetic risk for BD.
Collapse
Affiliation(s)
- Giuseppe Delvecchio
- Social Genetic and Developmental Psychiatry Center, Institute of Psychiatry, King's College London, London, UK
| | | | | |
Collapse
|
7
|
Impact of cross-disorder polygenic risk on frontal brain activation with specific effect of schizophrenia risk. Schizophr Res 2015; 161:484-9. [PMID: 25468172 PMCID: PMC4396692 DOI: 10.1016/j.schres.2014.10.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 11/22/2022]
Abstract
Evidence suggests that there is shared genetic aetiology across the major psychiatric disorders conferred by additive effects of many common variants. Measuring their joint effects on brain function may identify common neural risk mechanisms. We investigated the effects of a cross-disorder polygenic risk score (PGRS), based on additive effects of genetic susceptibility to the five major psychiatric disorders, on brain activation during performance of a language-based executive task. We examined this relationship in healthy individuals with (n=82) and without (n=57) a family history of bipolar disorder to determine whether this effect was additive or interactive dependent on the presence of family history. We demonstrate a significant interaction for polygenic loading×group in left lateral frontal cortex (BA9, BA6). Further examination indicated that this was driven by a significant positive correlation in those without a family history (i.e. healthy unrelated volunteers), with no significant relationships in the familial group. We then examined the effect of the individual diagnoses contributing to the PGRS to determine evidence of disorder-specificity. We found a significant association with the schizophrenia polygenic score only, with no other significant relationships. These findings indicate differences in left lateral frontal brain activation in association with increased cross-disorder PGRS in individuals without a family history of psychiatric illness. Lack of effects in the familial group may reflect epistatic effects, shared environmental influences or effects not captured by the PGRS. The specific relationship with loading for schizophrenia is notably consistent with frontal cortical inefficiency as a circumscribed phenotype of psychotic disorders.
Collapse
|
8
|
Redpath HL, Lawrie SM, Sprooten E, Whalley HC, McIntosh AM, Hall J. Progress in imaging the effects of psychosis susceptibility gene variants. Expert Rev Neurother 2014; 13:37-47. [DOI: 10.1586/ern.12.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Current World Literature. Curr Opin Support Palliat Care 2013; 7:116-28. [DOI: 10.1097/spc.0b013e32835e749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
11
|
Narayan S, Nakajima K, Sawa A. DISC1: a key lead in studying cortical development and associated brain disorders. Neuroscientist 2013; 19:451-64. [PMID: 23300216 DOI: 10.1177/1073858412470168] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For the past decade, DISC1 has been studied as a promising lead to understand the biology underlying major mental illnesses, such as schizophrenia. Consequently, many review articles on DISC1 have been published. In this article, rather than repeating comprehensive overviews of research articles, we will introduce the utility of DISC1 in the study of cortical development in association with a wide range of developmental brain disorders. Cortical development involves cell autonomous and cell nonautonomous mechanisms as well as host responses to environmental factors, all of which involve DISC1 function. Thus, we will discuss the significance of DISC1 in forming an overall understanding of multiple mechanisms that orchestrate corticogenesis and can serve as therapeutic targets in diseases caused by abnormal cortical development.
Collapse
Affiliation(s)
- Soumya Narayan
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
12
|
Whalley HC, Papmeyer M, Sprooten E, Romaniuk L, Blackwood DH, Glahn DC, Hall J, Lawrie SM, Sussmann J, McIntosh AM. The influence of polygenic risk for bipolar disorder on neural activation assessed using fMRI. Transl Psychiatry 2012; 2:e130. [PMID: 22760554 PMCID: PMC3410628 DOI: 10.1038/tp.2012.60] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) have demonstrated a significant polygenic contribution to bipolar disorder (BD) where disease risk is determined by the summation of many alleles of small individual magnitude. Modelling polygenic risk scores may be a powerful way of identifying disrupted brain regions whose genetic architecture is related to that of BD. We determined the extent to which common genetic variation underlying risk to BD affected neural activation during an executive processing/language task in individuals at familial risk of BD and healthy controls. Polygenic risk scores were calculated for each individual based on GWAS data from the Psychiatric GWAS Consortium Bipolar Disorder Working Group (PGC-BD) of over 16 000 subjects. The familial group had a significantly higher polygene score than the control group (P=0.04). There were no significant group by polygene interaction effects in terms of association with brain activation. However, we did find that an increasing polygenic risk allele load for BD was associated with increased activation in limbic regions previously implicated in BD, including the anterior cingulate cortex and amygdala, across both groups. The findings suggest that this novel polygenic approach to examine brain-imaging data may be a useful means of identifying genetically mediated traits mechanistically linked to the aetiology of BD.
Collapse
Affiliation(s)
- H C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Malavasi ELV, Ogawa F, Porteous DJ, Millar JK. DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription. Hum Mol Genet 2012; 21:2779-92. [PMID: 22422769 PMCID: PMC3363331 DOI: 10.1093/hmg/dds106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness.
Collapse
Affiliation(s)
- Elise L V Malavasi
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|