1
|
Milla-Neyra K, Araujo-Aliaga I, Manrique-Enciso C, Sarapura-Castro E, Illanes-Manrique M, Veliz-Otani D, Saldarriaga-Mayo A, Medina-Colque A, Rios-Pinto J, Cornejo-Herrera I, Rivera-Valdivia A, F Mata I, Loesch D, Lozano-Vasquez L, Bordia T, O'Connor T, Schüle B, Cornejo-Olivas M. Novel Intermediate ATXN10 Alleles in the Healthy Peruvian Population: A Matter of Indigenous American Ethnic Origin. CEREBELLUM (LONDON, ENGLAND) 2025; 24:44. [PMID: 39918768 DOI: 10.1007/s12311-025-01795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a neurodegenerative disease predominant in Latin American individuals with Indigenous American ancestry. SCA10 is caused by an expansion of ATTCT repeat within the ATXN10 gene. Healthy individuals carry 9-32 ATTCT repeats, whereas SCA10 patients carry an expansion of 280 repeats and higher. Recently, intermediate alleles (over than 32 repeats) have been identified in healthy Peruvian Indigenous American individuals, with unclear significance. This study aims to characterize the variability of the ATTCT repeats within the ATXN10 gene across self-declared Indigenous American and Mestizo subpopulations from Peru. A total of 871 samples (754 Mestizo and 117 Indigenous American) were analyzed using PCR, and RP-PCR when suspecting apparent homozygosity due to larger alleles. 8.7% of the total of healthy individuals (76/871) carry at least one intermediate allele. The 14-repeat allele being the most common for both subpopulations (41.5%). Intermediate alleles were detected in the Peruvian population (4.5%) with a significantly higher frequency among self-declared Indigenous American compared to Mestizo, suggesting a possible association with the ethnic origin. The G allele at the SNP rs41524547 had a frequency of 51.39% in individuals with intermediate alleles, with not significantly difference between subpopulations. Further analysis should be performed to confirm the size and composition of ATTCT repeat tract, as well as the contribution of rs41524547 in SCA10.
Collapse
Affiliation(s)
- Karina Milla-Neyra
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.
| | - Ismael Araujo-Aliaga
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Carla Manrique-Enciso
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Elison Sarapura-Castro
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Maryenela Illanes-Manrique
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Diego Veliz-Otani
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ana Saldarriaga-Mayo
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | | | | | | | - Andrea Rivera-Valdivia
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Ignacio F Mata
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas Loesch
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Leonel Lozano-Vasquez
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Tanuja Bordia
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy O'Connor
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru.
| |
Collapse
|
2
|
Ibañez K, Jadhav B, Zanovello M, Gagliardi D, Clarkson C, Facchini S, Garg P, Martin-Trujillo A, Gies SJ, Galassi Deforie V, Dalmia A, Hensman Moss DJ, Vandrovcova J, Rocca C, Moutsianas L, Marini-Bettolo C, Walker H, Turner C, Shoai M, Long JD, Fratta P, Langbehn DR, Tabrizi SJ, Caulfield MJ, Cortese A, Escott-Price V, Hardy J, Houlden H, Sharp AJ, Tucci A. Increased frequency of repeat expansion mutations across different populations. Nat Med 2024; 30:3357-3368. [PMID: 39354197 PMCID: PMC11564083 DOI: 10.1038/s41591-024-03190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/11/2024] [Indexed: 10/03/2024]
Abstract
Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions and technological limitations leading to underascertainment. Here, leveraging whole-genome sequencing data from 82,176 individuals from different populations, we found an overall disease allele frequency of REDs of 1 in 283 individuals. Modeling disease prevalence using genetic data, age at onset and survival, we show that the expected number of people with REDs would be two to three times higher than currently reported figures, indicating underdiagnosis and/or incomplete penetrance. While some REDs are population specific, for example, Huntington disease-like 2 in Africans, most REDs are represented in all broad genetic ancestries (that is, Europeans, Africans, Americans, East Asians and South Asians), challenging the notion that some REDs are found only in specific populations. These results have worldwide implications for local and global health communities in the diagnosis and counseling of REDs.
Collapse
Affiliation(s)
- Kristina Ibañez
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matteo Zanovello
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Delia Gagliardi
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | | | - Stefano Facchini
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
- IRCCS Mondino Foundation, Pavia, Italy
| | - Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Gies
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Davina J Hensman Moss
- St George's, University of London, London, UK
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | | | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Helen Walker
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chris Turner
- Centre for Neuromuscular Disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Maryam Shoai
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Jeffrey D Long
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Douglas R Langbehn
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Sarah J Tabrizi
- UK Dementia Research Institute, UCL, London, UK
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
- Huntington's Disease Centre, UCL, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
- IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Escott-Price
- Department of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - John Hardy
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Henry Houlden
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK.
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK.
| |
Collapse
|
3
|
Torkamani-Dordshaikh S, Darabi S, Norouzian M, Bahar R, Beirami A, Moghaddam MH, Fathi M, Vakili K, Tahmasebinia F, Bahrami M, Abbaszadeh HA, Aliaghaei A. Exploring the therapeutic potential: Apelin-13's neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington's disease. Anat Cell Biol 2024; 57:419-430. [PMID: 39079710 PMCID: PMC11424562 DOI: 10.5115/acb.23.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 08/06/2024] Open
Abstract
Huntington's disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP. Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group. Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group. Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
Collapse
Affiliation(s)
- Shaysteh Torkamani-Dordshaikh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bahar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Beirami
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foozhan Tahmasebinia
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bahrami
- Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Grimaldi A, Veneziani I, Culicetto L, Quartarone A, Lo Buono V. Risk Factors and Interventions for Suicide in Huntington's Disease-A Systematic Review. J Clin Med 2024; 13:3437. [PMID: 38929966 PMCID: PMC11205005 DOI: 10.3390/jcm13123437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Huntington's disease (HD) is an autosomal dominant genetic disorder causing progressive neurodegeneration which, aside from symptomatic therapies for controlling psychological and motor problems, currently has no effective treatment. People who receive this diagnosis often feel disoriented and lost without guidance. Furthermore, HD patients are estimated to have a two to seven times greater risk of suicide death compared to the general population. The current review investigates the complex relationship between HD and suicide, seeking to identify key risk factors influencing suicidal ideation and behaviour in affected individuals. Methods: We conducted a systematic review following the PRISMA guidelines. Studies were searched for on the PubMed, Cochrane, and Web of Science databases, and 17 articles met the inclusion criteria. Results: The findings reveal that emotional strain, neuropsychiatric symptoms, and the absence of a cure contribute to heightened suicidal tendencies in HD patients. Critical periods for suicide risk coincide with early symptomatic stages of disease or the successive phase, with the loss of independence impacting on daily functioning. Risk factors associated with HD include a depressive mood, cognitive impairments, and a history of suicide attempts. Conclusions: From a prevention perspective, a comprehensive multidisciplinary and multidimensional approach could enhance the overall well-being of people with HD. In particular, screening for suicidal thoughts in people with HD could mitigate suicide risk.
Collapse
Affiliation(s)
- Alessandro Grimaldi
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy; (A.G.); (I.V.)
| | - Isabella Veneziani
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy; (A.G.); (I.V.)
| | - Laura Culicetto
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.Q.); (V.L.B.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.Q.); (V.L.B.)
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.Q.); (V.L.B.)
| |
Collapse
|
5
|
Muthinja MJ, Guelngar CO, Fall M, Jama F, Shuja HA, Nambafu J, Massi DG, Ojo OO, Okubadejo NU, Taiwo FT, Diop AM, de Chacus CJDG, Cissé FA, Cissé A, Hooker J, Sokhi D, Houlden H, Rizig M. An exploration of the genetics of the mutant Huntingtin (mHtt) gene in a cohort of patients with chorea from different ethnic groups in sub-Saharan Africa. Ann Hum Genet 2024. [PMID: 38563088 DOI: 10.1111/ahg.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Africans are underrepresented in Huntington's disease (HD) research. A European ancestor was postulated to have introduced the mutant Huntingtin (mHtt) gene to the continent; however, recent work has shown the existence of a unique Htt haplotype in South-Africa specific to indigenous Africans. OBJECTIVE We aimed to investigate the CAG trinucleotide repeats expansion in the Htt gene in a geographically diverse cohort of patients with chorea and unaffected controls from sub-Saharan Africa. METHODS We evaluated 99 participants: 43 patients with chorea, 21 asymptomatic first-degree relatives of subjects with chorea, and 35 healthy controls for the presence of the mHtt. Participants were recruited from 5 African countries. Additional data were collected from patients positive for the mHtt gene; these included demographics, the presence of psychiatric and (or) cognitive symptoms, family history, spoken languages, and ethnic origin. Additionally, their pedigrees were examined to estimate the number of people at risk of developing HD and to trace back the earliest account of the disease in each region. RESULTS HD cases were identified in all countries. Overall, 53.4% of patients with chorea were carriers for the mHTT; median tract size was 45 CAG repeats. Of the asymptomatic relatives, 28.6% (6/21) were carriers for the mHTT; median tract size was 40 CAG. No homozygous carries were identified. Median CAG tract size in controls was 17 CAG repeats. Men and women were equally affected by HD. All patients with HD-bar three who were juvenile onset of <21 years-were defined as adult onset (median age of onset was 40 years). HD transmission followed an autosomal dominant pattern in 84.2% (16/19) of HD families. In familial cases, maternal transmission was higher 52.6% (10/19) than paternal transmission 36.8% (7/19). The number of asymptomatic individuals at risk of developing HD was estimated at ten times more than the symptomatic patients. HD could be traced back to the early 1900s in most African sites. HD cases spread over seven ethnic groups belonging to two distinct linguistic lineages separated from each other approximately 54-16 kya ago: Nilo-Sahara and Niger-Congo. CONCLUSION This is the first study examining HD in multiple sites in sub-Saharan Africa. We demonstrated that HD is found in multiple ethnic groups residing in five sub-Saharan African countries including the first genetically confirmed HD cases from Guinea and Kenya. The prevalence of HD in the African continent, its associated socio-economic impact, and genetic origins need further exploration and reappraisal.
Collapse
Affiliation(s)
| | - Carlos Othon Guelngar
- Department of Neurology, National Hospital Ignace Deen, University of Conakry, Conakry, Guinea
| | - Maouly Fall
- Centre Hospitalier National de Pikine, Service de Neurologie, Dakar, Senegal
| | - Fatumah Jama
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Huda Aldeen Shuja
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jamila Nambafu
- Department of Medicine, Aga Khan University Medical College of East Africa, Nairobi, Kenya
| | - Daniel Gams Massi
- Doula General Hospital, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Oluwadamilola O Ojo
- Neurology Unit, Department of Medicine, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Njideka U Okubadejo
- Neurology Unit, Department of Medicine, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | | | | - Fodé Abass Cissé
- Department of Neurology, National Hospital Ignace Deen, University of Conakry, Conakry, Guinea
| | - Amara Cissé
- Department of Neurology, National Hospital Ignace Deen, University of Conakry, Conakry, Guinea
| | - Juzar Hooker
- Department of Medicine, Aga Khan University Medical College of East Africa, Nairobi, Kenya
| | - Dilraj Sokhi
- Department of Medicine, Aga Khan University Medical College of East Africa, Nairobi, Kenya
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
6
|
Shin C, Kim R, Yoo D, Oh E, Moon J, Kim M, Lee JY, Kim JM, Koh SB, Kim M, Jeon B. A Practical Guide for Clinical Approach to Patients With Huntington's Disease in Korea. J Mov Disord 2024; 17:138-149. [PMID: 38467449 PMCID: PMC11082599 DOI: 10.14802/jmd.24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Chaewon Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ryul Kim
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jee-Young Lee
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, BJ Center for Comprehensive Parkinson Care and Rare Movement Disorders, Chung-Ang University Health Care System, Hyundae Hospital, Namyangju, Korea
| | - on behalf of the Korean Huntington’s Disease Society
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
- Department of Neurology, BJ Center for Comprehensive Parkinson Care and Rare Movement Disorders, Chung-Ang University Health Care System, Hyundae Hospital, Namyangju, Korea
| |
Collapse
|
7
|
Cheng Y, Zhang S, Shang H. Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease. J Transl Int Med 2024; 12:134-147. [PMID: 38779119 PMCID: PMC11107186 DOI: 10.2478/jtim-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a devastating, autosomal-dominant inherited, neurodegenerative disorder characterized by progressive motor deficits, cognitive impairments, and neuropsychiatric symptoms. It is caused by excessive cytosine-adenine-guanine (CAG) trinucleotide repeats within the huntingtin gene (HTT). Presently, therapeutic interventions capable of altering the trajectory of HD are lacking, while medications for abnormal movement and psychiatric symptoms are limited. Numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. In this review, we update the latest advances on new promising molecular-based therapeutic strategies for this disorder, including DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. We mainly focus on the ongoing clinical trials and the latest pre-clinical studies to explore the progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| |
Collapse
|
8
|
Kim R, Seong MW, Oh B, Shin HS, Lee JS, Park S, Jang M, Jeon B, Kim HJ, Lee JY. Analysis of HTT CAG repeat expansion among healthy individuals and patients with chorea in Korea. Parkinsonism Relat Disord 2024; 118:105930. [PMID: 37992538 DOI: 10.1016/j.parkreldis.2023.105930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Although the epidemiology of Huntington's disease (HD) in Korea differs notably from that in Western countries, the genetic disparities between these regions remain unclear. OBJECTIVE To investigate the characteristics and clinical significance of cytosine-adenine-guanine (CAG) repeat size associated with HD in the Korean population. METHODS We analyzed the CAG repeat lengths of the HTT gene in 941 healthy individuals (1,882 alleles) and 954 patients with chorea (1,908 alleles) from two referral hospitals in Korea. We presented normative CAG repeat length data for the Korean population and computed the reduced penetrance (36-39 CAG) and intermediate allele (27-35 CAG) frequencies in the two groups. Furthermore, we investigated the relationship between intermediate alleles and chorea development using logistic regression models in individuals aged ≥55 years. RESULTS The mean (±standard deviation) CAG repeat length in healthy individuals was 17.5 ± 2.0, with a reduced penetrance allele frequency of 0.05 % (1/1882) and intermediate allele frequency of 0.69 % (13/1882). We identified 213 patients with genetically confirmed HD whose CAG repeat length ranged from 39 to 140, with a mean of 45.2 ± 7.9 in the longer allele. Compared with normal CAG repeat alleles, intermediate CAG repeat alleles were significantly related to a higher risk of developing chorea (age of onset range, 63-84 years) in individuals aged ≥55 years. CONCLUSIONS This study provides insights into the specific characteristics of CAG repeat lengths in the HTT gene in the Korean population. The reduced penetrance and intermediate allele frequencies in the Korean general population seem to be lower than those reported in Western populations. The presence of intermediate alleles may increase the risk of chorea in the Korean elderly population, which requires further large-scale investigations.
Collapse
Affiliation(s)
- Ryul Kim
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Bumjo Oh
- Department of Familial Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ho Seop Shin
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangmin Park
- Department of Neurology, Daejeon Eulji Medical Center, Eulji University College of Medicine, Daejeon, South Korea
| | - Mihee Jang
- Department of Neurology, JMH Seoul Neurologic Clinic, Seoul, South Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Krause A, Anderson DG, Ferreira-Correia A, Dawson J, Baine-Savanhu F, Li PP, Margolis RL. Huntington disease-like 2: insight into neurodegeneration from an African disease. Nat Rev Neurol 2024; 20:36-49. [PMID: 38114648 DOI: 10.1038/s41582-023-00906-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Huntington disease (HD)-like 2 (HDL2) is a rare genetic disease caused by an expanded trinucleotide repeat in the JPH3 gene (encoding junctophilin 3) that shows remarkable clinical similarity to HD. To date, HDL2 has been reported only in patients with definite or probable African ancestry. A single haplotype background is shared by patients with HDL2 from different populations, supporting a common African origin for the expansion mutation. Nevertheless, outside South Africa, reports of patients with HDL2 in Africa are scarce, probably owing to limited clinical services across the continent. Systematic comparisons of HDL2 and HD have revealed closely overlapping motor, cognitive and psychiatric features and similar patterns of cerebral and striatal atrophy. The pathogenesis of HDL2 remains unclear but it is proposed to occur through several mechanisms, including loss of protein function and RNA and/or protein toxicity. This Review summarizes our current knowledge of this African-specific HD phenocopy and highlights key areas of overlap between HDL2 and HD. Given the aforementioned similarities in clinical phenotype and pathology, an improved understanding of HDL2 could provide novel insights into HD and other neurodegenerative and/or trinucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - David G Anderson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- University of Glasgow, Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, Faculty of Humanities, University of the Witwatersrand, Johannesburg, South Africa
| | - Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Sena LS, Lemes RB, Furtado GV, Saraiva-Pereira ML, Jardim LB. A model for the dynamics of expanded CAG repeat alleles: ATXN2 and ATXN3 as prototypes. Front Genet 2023; 14:1296614. [PMID: 38034492 PMCID: PMC10682950 DOI: 10.3389/fgene.2023.1296614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3/MJD) are diseases due to dominant unstable expansions of CAG repeats (CAGexp). Age of onset of symptoms (AO) correlates with the CAGexp length. Repeat instability leads to increases in the expanded repeats, to important AO anticipations and to the eventual extinction of lineages. Because of that, compensatory forces are expected to act on the maintenance of expanded alleles, but they are poorly understood. Objectives: we described the CAGexp dynamics, adapting a classical equation and aiming to estimate for how many generations will the descendants of a de novo expansion last. Methods: A mathematical model was adapted to encompass anticipation, fitness, and allelic segregation; and empirical data fed the model. The arbitrated ancestral mutations included in the model had the lowest CAGexp and the highest AO described in the literature. One thousand generations were simulated until the alleles were eliminated, fixed, or 650 generations had passed. Results: All SCA2 lineages were eliminated in a median of 10 generations. In SCA3/MJD lineages, 593 were eliminated in a median of 29 generations. The other ones were eliminated due to anticipation after the 650th generation or remained indefinitely with CAG repeats transitioning between expanded and unexpanded ranges. Discussion: the model predicted outcomes compatible with empirical data - the very old ancestral SCA3/MJD haplotype, and the de novo SCA2 expansions -, which previously seemed to be contradictory. This model accommodates these data into understandable dynamics and might be useful for other CAGexp disorders.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Gabriel Vasata Furtado
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Paucar M, Laffita-Mesa J, Niemelä V, Malmgren H, Nennesmo I, Lagerstedt-Robinson K, Nordenskjöld M, Svenningsson P. Genetic screening for Huntington disease phenocopies in Sweden: A tertiary center case series focused on short tandem repeat (STR) disorders. J Neurol Sci 2023; 451:120707. [PMID: 37379724 DOI: 10.1016/j.jns.2023.120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE To perform a screening for Huntington disease (HD) phenocopies in a Swedish cohort. METHODS Seventy-three DNA samples negative for HD were assessed at a tertiary center in Stockholm. The screening included analyses for C9orf72-frontotemporal dementia/amyotrophic lateral sclerosis (C9orf72-FTD/ALS), octapeptide repeat insertions (OPRIs) in PRNP associated with inherited prion diseases (IPD), Huntington's disease-like 2 (HDL2), spinocerebellar ataxia-2 (SCA2), spinocerebellar ataxia 3 (SCA3) and spinocerebellar ataxia-17 (SCA17). Targeted genetic analysis was carried out in two cases based on the salient phenotypic features. RESULTS The screening identified two patients with SCA17, one patient with IPD associated with 5-OPRI but none with nucleotide expansions in C9orf72 or for HDL2, SCA2 or SCA3. Furthermore, SGCE-myoclonic-dystonia 11 (SGCE-M-D) and benign hereditary chorea (BHC) was diagnosed in two sporadic cases. WES identified VUS in STUB1 in two patients with predominant cerebellar ataxia. CONCLUSIONS Our results are in keeping with previous screenings and suggest that other genes yet to be discovered are involved in the etiology of HD phenocopies.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - José Laffita-Mesa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Valter Niemelä
- Institute for Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Ashique S, Afzal O, Yasmin S, Hussain A, Altamimi MA, Webster TJ, Altamimi ASA. Strategic nanocarriers to control neurodegenerative disorders: Concept, challenges, and future perspective. Int J Pharm 2023; 633:122614. [PMID: 36646255 DOI: 10.1016/j.ijpharm.2023.122614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Various neurodegenerative diseases (parkinson, huntington, alzheimer, and amyotrophic lateral sclerosis) are becoming serious global health challenges. Despite various treatment options, successful delivery and effective outcomes have been challenged with several physiological-anatomical barriers, formulation related issues, post-administration hurdles, regulatory constraints, physical hurdles, environmental issues, and safety concern. In the present review, we addressed a brief understanding of pathological and normal condition of blood brain barrier (BBB), rational for brain delivery using nanocarriers, major challenges, advantages of nanomedicine, critical aspects of nanomedicine to translate from bed to clinics, and strategic approaches for improved delivery across BBB. The review addressed various mechanistic perspective for delivery of drug loaded nanocarriers across BBB. Moreover, several reports have been published wherein phytomedicine, exosomes, magnetic nanopartilces, functionalized nanocarriers, cationic nanopartilces, and nano-phytomedicine were investigated for remarkable improvement in neurological disorders. These findings are informative for healthcare professionals, researchers, and scientists working in the domains. The successful application and convincing outcomes of nanomedicines were envisaged with clinical trials conducted on various drugs intended to control neurological disorders (NDs). Conclusively, the review addressed comprehensive findings on various aspects of drug loaded nanocarrier delivery across BBB, considerable risks, potential therapeutic benefits, clinical trial based outcomes, and recent advances followed by future perspectives.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut-250103, UP, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, King Khalid University, Abha 61441, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Engineering, Hebei University of Technology, Tianjin, China
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
13
|
Sturchio A, Duker AP, Muñoz-Sanjuan I, Espay AJ. Subtyping monogenic disorders: Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:171-184. [PMID: 36803810 DOI: 10.1016/b978-0-323-85555-6.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Huntington disease is a highly disabling neurodegenerative disease characterized by psychiatric, cognitive, and motor deficits. The causal genetic mutation in huntingtin (Htt, also known as IT15), located on chromosome 4p16.3, leads to an expansion of a triplet coding for polyglutamine. The expansion is invariably associated with the disease when >39 repeats. Htt encodes for the protein huntingtin (HTT), which carries out many essential biological functions in the cell, in particular in the nervous system. The precise mechanism of toxicity is not known. Based on a one-gene-one-disease framework, the prevailing hypothesis ascribes toxicity to the universal aggregation of HTT. However, the aggregation process into mutant huntingtin (mHTT) is associated with a reduction of the levels of wild-type HTT. A loss of wild-type HTT may plausibly be pathogenic, contributing to the disease onset and progressive neurodegeneration. Moreover, many other biological pathways are altered in Huntington disease, such as in the autophagic system, mitochondria, and essential proteins beyond HTT, potentially explaining biological and clinical differences among affected individuals. As one gene does not mean one disease, future efforts at identifying specific Huntington subtypes are important to design biologically tailored therapeutic approaches that correct the corresponding biological pathways-rather than continuing to exclusively target the common denominator of HTT aggregation for elimination.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States; Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden.
| | - Andrew P Duker
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | | | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
14
|
Sipilä JO. Stable low prevalence of Huntington's disease in Finland. Clin Park Relat Disord 2023; 8:100198. [PMID: 37152417 PMCID: PMC10154769 DOI: 10.1016/j.prdoa.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Jussi O.T. Sipilä
- Address: Department of Neurology, North Karelia Central Hospital, Tikkamäentie 16, FI-80210 Joensuu, Finland.
| |
Collapse
|
15
|
Medina A, Mahjoub Y, Shaver L, Pringsheim T. Prevalence and Incidence of Huntington's Disease: An Updated Systematic Review and Meta-Analysis. Mov Disord 2022; 37:2327-2335. [PMID: 36161673 PMCID: PMC10086981 DOI: 10.1002/mds.29228] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
The incidence and prevalence of Huntington's disease (HD) based on a systematic review and meta-analysis of 20 studies published from 1985 to 2010 was estimated at 0.38 per 100,000 person-years (95% confidence interval [CI], 0.16-0.94) and 2.71 per 100,000 persons (95% CI, 1.55-4.72), respectively. Since 2010, there have been many new epidemiological studies of HD. We sought to update the global estimates of HD incidence and prevalence using data published up to February 2022 and perform additional analyses based on study continent. Medline and Embase were searched for epidemiological studies of HD published between 2010 and 2022. Risk of bias was assessed using a quality assessment tool. Estimated pooled prevalence or incidence was calculated using a random-effects meta-analysis. A total of 33 studies published between 2010 and 2022 were included. Pooled incidence was 0.48 cases per 100,000 person-years (95% CI, 0.33-0.63). Subgroup analysis by continent demonstrated a significantly higher incidence of HD in Europe and North America than in Asia. Pooled prevalence was 4.88 per 100,000 (95% CI, 3.38-7.06). Subanalyses by continent demonstrated that the prevalence of HD was significantly higher in Europe and North America than in Africa. The minor increase in prevalence (more so than incidence) demonstrated in this updated review could relate to the enhanced availability of molecular testing, earlier diagnosis, increased life expectancy, and de novo mutations. Limitations include variable case ascertainment methods and lacking case validation data. © 2022 Her Majesty the Queen in Right of Canada. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Reproduced with the permission of the Minister of Public Health Agency of Canada.
Collapse
Affiliation(s)
- Alex Medina
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Larry Shaver
- Adult Chronic Diseases and Conditions DivisionPublic Health Agency of CanadaNepeanOntarioCanada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Psychiatry, Pediatrics, Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
16
|
Irfan Z, Khanam S, Karmakar V, Firdous SM, El Khier BSIA, Khan I, Rehman MU, Khan A. Pathogenesis of Huntington's Disease: An Emphasis on Molecular Pathways and Prevention by Natural Remedies. Brain Sci 2022; 12:1389. [PMID: 36291322 PMCID: PMC9599635 DOI: 10.3390/brainsci12101389] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Huntington's disease is an inherited autosomal dominant trait neuro-degenerative disorder caused by changes (mutations) of a gene called huntingtin (htt) that is located on the short arm (p) of chromosome 4, CAG expansion mutation. It is characterized by unusual movements, cognitive and psychiatric disorders. OBJECTIVE This review was undertaken to apprehend biological pathways of Huntington's disease (HD) pathogenesis and its management by nature-derived products. Natural products can be lucrative for the management of HD as it shows protection against HD in pre-clinical trials. Advanced research is still required to assess the therapeutic effectiveness of the known organic products and their isolated compounds in HD experimental models. SUMMARY Degeneration of neurons in Huntington's disease is distinguished by progressive loss of motor coordination and muscle function. This is due to the expansion of CAG trinucleotide in the first exon of the htt gene responsible for neuronal death and neuronal network degeneration in the brain. It is believed that the factors such as molecular genetics, oxidative stress, excitotoxicity, mitochondrial dysfunction, neuroglia dysfunction, protein aggregation, and altered UPS leads to HD. The defensive effect of the natural product provides therapeutic efficacy against HD. Recent reports on natural drugs have enlightened the protective role against HD via antioxidant, anti-inflammatory, antiapoptotic, and neurofunctional regulation.
Collapse
Affiliation(s)
- Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Kolkata 700125, West Bengal, India
| | - Sofia Khanam
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat 700126, West Bengal, India
| | - Sayeed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Howrah 711316, West Bengal, India
| | | | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
17
|
Dawson J, Baine-Savanhu FK, Ciosi M, Maxwell A, Monckton DG, Krause A. A probable cis-acting genetic modifier of Huntington disease frequent in individuals with African ancestry. HGG ADVANCES 2022; 3:100130. [PMID: 35935919 PMCID: PMC9352962 DOI: 10.1016/j.xhgg.2022.100130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Huntington disease (HD)is a dominantly inherited neurodegenerative disorder caused by the expansion of a polyglutamine encoding CAG repeat in the huntingtin gene. Recently, it has been established that disease severity in HD is best predicted by the number of pure CAG repeats rather than total glutamines encoded. Along with uncovering DNA repair gene variants as trans-acting modifiers of HD severity, these data reveal somatic expansion of the CAG repeat as a key driver of HD onset. Using high-throughput DNA sequencing, we have determined the precise sequence and somatic expansion profiles of the HTT repeat tract of 68 HD-affected and 158 HD-unaffected African ancestry individuals. A high level of HTT repeat sequence diversity was observed, with three likely African-specific alleles identified. In the most common disease allele (30 out of 68), the typical proline-encoding CCGCCA sequence was absent. This CCGCCA-loss disease allele was associated with an earlier age of diagnosis of approximately 7.1 years and occurred exclusively on haplotype B2. Although somatic expansion was associated with an earlier age of diagnosis in the study overall, the CCGCCA-loss disease allele displayed reduced somatic expansion relative to the typical HTT expansions in blood DNA. We propose that the CCGCCA loss occurring on haplotype B2 is an African cis-acting modifier that appears to alter disease diagnosis of HD through a mechanism that is not driven by somatic expansion. The assessment of a group of individuals from an understudied population has highlighted population-specific differences that emphasize the importance of studying genetically diverse populations in the context of disease.
Collapse
Affiliation(s)
- Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Fiona K. Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alastair Maxwell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Corresponding author
| |
Collapse
|
18
|
Common huntingtin-related genetic variation is associated with neurobiological and aging traits in humans. Cell Death Dis 2022; 8:311. [PMID: 35810172 PMCID: PMC9271075 DOI: 10.1038/s41420-022-01114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
|
19
|
Coysh T, Mead S. The Future of Seed Amplification Assays and Clinical Trials. Front Aging Neurosci 2022; 14:872629. [PMID: 35813946 PMCID: PMC9257179 DOI: 10.3389/fnagi.2022.872629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prion-like seeded misfolding of host proteins is the leading hypothesised cause of neurodegenerative diseases. The exploitation of the mechanism in the protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC) assays have transformed prion disease research and diagnosis and have steadily become more widely used for research into other neurodegenerative disorders. Clinical trials in adult neurodegenerative diseases have been expensive, slow, and disappointing in terms of clinical benefits. There are various possible factors contributing to the failure to identify disease-modifying treatments for adult neurodegenerative diseases, some of which include: limited accuracy of antemortem clinical diagnosis resulting in the inclusion of patients with the “incorrect” pathology for the therapeutic; the role of co-pathologies in neurodegeneration rendering treatments targeting one pathology alone ineffective; treatment of the primary neurodegenerative process too late, after irreversible secondary processes of neurodegeneration have become established or neuronal loss is already extensive; and preclinical models used to develop treatments not accurately representing human disease. The use of seed amplification assays in clinical trials offers an opportunity to tackle these problems by sensitively detecting in vivo the proteopathic seeds thought to be central to the biology of neurodegenerative diseases, enabling improved diagnostic accuracy of the main pathology and co-pathologies, and very early intervention, particularly in patients at risk of monogenic forms of neurodegeneration. The possibility of quantifying proteopathic seed load, and its reduction by treatments, is an attractive pharmacodynamic biomarker in the preclinical and early clinical stages of drug development. Here we review some potential applications of seed amplification assays in clinical trials.
Collapse
Affiliation(s)
- Thomas Coysh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
20
|
Mazzeo S, Emiliani F, Bagnoli S, Padiglioni S, Conti V, Ingannato A, Giacomucci G, Balestrini J, Ferrari C, Sorbi S, Nacmias B, Bessi V. Huntingtin gene intermediate alleles influence the progression from Subjective Cognitive Decline to Mild Cognitive Impairment: a 14-year follow-up study. Eur J Neurol 2022; 29:1600-1609. [PMID: 35181957 DOI: 10.1111/ene.15291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Huntingtin (HTT) is a gene containing a key region of CAG repeats. HTT alleles containing from 27 to 35 CAG repeats are termed as intermediate alleles (IAs). We aim to assess the effect of IAs on progression of cognitive impairment in patients with subjective cognitive decline (SCD). METHODS We included 106 patients with SCD. All the patients underwent neuropsychological assessments and blood sample collections at baseline. Patients were followed-up for a median time of 13.75 (IQR=8.17) years. We genotyped APOE and HTT at the end of the follow-up. RESULTS Eleven out of 106 patients (10.38% [95%C.I.=4.57-16.18]) were carriers of IA (IA+ ). During the follow-up, 44 patients (41.51% [95%C.I.=32.13-50.89]) progressed to MCI (p-SCD), while 62 patients (58.49% [95% C.I.=49.11-67.87]) did not (np-SCD). Rate of progression to MCI was associated with IAs, age at baseline, and APOE ɛ4. We dichotomized age at baseline (<60 = younger patients [YP], >60 = older patients [OP]) and classified patients into four groups: YP/IAs- , YP/IAs+ , OP/IAs- and OP/IAs+ . OP/IAs+ had a higher proportion of progression from SCD to MCI (85.71% [95%C.I.=59.79-100]) as compared to YP/IAs- (28.57% [95%C.I.=13.60-43.54], χ2 =15.25, p<0.001) and OP/IAs- (45.00% [95%C.I.=32.41-57.59], χ2 =7.903, p=0.005). We classified patients according to APOE and IA as: ɛ4- /IA- , ɛ4- /IA+ , ɛ4+ /IA- , ɛ4+ /IA+ . Proportion of progression in ɛ4+ /IA+ group (100%) was higher as compared to ɛ4- /IA- (33.33% [95%C.I.=21.96-44.71], χ2 =14.43, p <0.001) and ɛ4+ /IA- (55.56% [95%C.I.=36.81-74.30], χ2 =4.60, p=0.032). CONCLUSIONS IAs interact with age and APOE ɛ4 increasing the risk of progression to MCI in SCD patients.
Collapse
Affiliation(s)
- Salvatore Mazzeo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Filippo Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Sonia Padiglioni
- Unit Clinic of Organizations Careggi University Hospital, 50139, Florence, Italy.,Regional Referral Centre for Relational Criticalities - Tuscany Region, Italy
| | | | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Juri Balestrini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| |
Collapse
|
21
|
Shaw E, Mayer M, Ekwaru P, McMullen S, Graves E, Wu JW, Budd N, Maturi B, Cowling T, Mestre TA. Epidemiology and economic burden of Huntington's disease: a Canadian provincial public health system perspective. J Med Econ 2022; 25:212-219. [PMID: 35073826 DOI: 10.1080/13696998.2022.2033493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS To evaluate the epidemiology, healthcare resource utilization, and direct healthcare costs associated with Huntington's disease in a Canadian setting with a universal healthcare system. MATERIALS AND METHODS Using Albertan administrative health data, a retrospective cohort was identified applying an algorithm requiring two HD diagnostic codes within two years, using the first record as the index date (i.e. proxy for diagnosis date), from 1 April 2010 to 31 March 2019 for patients ≥21 years old. Incidence/prevalence measures were evaluated from 1 April 2010 to 31 March 2019, while healthcare resource utilization and healthcare costs per person-year (inflated to 2020 Canadian dollars) were evaluated from index to the end of follow-up (death, moved out of province, or 31 March 2020). RESULTS Mean [standard deviation] age at index (n = 395) was 53.9 [13.8] years and 53.7% were female. From 2010 to 2019, annual HD incidence varied between 0.47 and 1.21/100,000 person-years and HD prevalence increased from 7.25 to 9.33/100,000 persons. The mean number of visits per person-year for general and specialist practitioners was 19.2 [18.8] and 12.2 [25.5], respectively. The mean total all-cause direct healthcare costs were $23,211 [$38,599] per person-year, with hospitalizations accounting for 57.8% of all-cause costs. Costs were higher among individuals with a long-term care stay, a proxy for disease severity. LIMITATIONS AND CONCLUSIONS This study utilizes administrative health data to describe the epidemiology of HD and utilization of publicly funded care by individuals with HD. While administrative data presents limitations since it is not collected for research purposes, it provides a population-level examination of the burden of HD. There was a substantial economic burden associated with HD in a Canadian setting.
Collapse
Affiliation(s)
- Eileen Shaw
- Medlior Health Outcomes Research Ltd., Calgary, Canada
| | | | - Paul Ekwaru
- Medlior Health Outcomes Research Ltd., Calgary, Canada
| | | | - Erin Graves
- Medlior Health Outcomes Research Ltd., Calgary, Canada
| | | | | | | | - Tara Cowling
- Medlior Health Outcomes Research Ltd., Calgary, Canada
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Centre, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| |
Collapse
|
22
|
Nikitina M, Bragina E, Nazarenko M, Alifirova V. The role of alleles with an intermediate number of trinucleotide repeats in Parkinson’s disease and other neurodegenerative disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:42-50. [DOI: 10.17116/jnevro202212207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
24
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
25
|
Bessi V, Mazzeo S, Bagnoli S, Giacomucci G, Ingannato A, Ferrari C, Padiglioni S, Franchi V, Sorbi S, Nacmias B. The Effect of CAG Repeats within the Non-Pathological Range in the HTT Gene on Cognitive Functions in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment. Diagnostics (Basel) 2021; 11:1051. [PMID: 34200421 PMCID: PMC8228729 DOI: 10.3390/diagnostics11061051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
The Huntingtin gene (HTT) is within a class of genes containing a key region of CAG repeats. When expanded beyond 39 repeats, Huntington disease (HD) develops. Individuals with less than 35 repeats are not associated with HD. Increasing evidence has suggested that CAG repeats play a role in modulating brain development and brain function. However, very few studies have investigated the effect of CAG repeats in the non-pathological range on cognitive performances in non-demented individuals. In this study, we aimed to test how CAG repeats' length influences neuropsychological scores in patients with subjective cognitive decline (SCD) and mild cognitive impairment (MCI). We included 75 patients (46 SCD and 29 MCI). All patients underwent an extensive neuropsychological battery and analysis of HTT alleles to quantify the number of CAG repeats. Results: CAG repeat number was positively correlated with scores of tests assessing for executive function, visual-spatial ability, and memory in SCD patients, while in MCI patients, it was inversely correlated with scores of visual-spatial ability and premorbid intelligence. When we performed a multiple regression analysis, we found that these relationships still remained, also when adjusting for possible confounding factors. Interestingly, logarithmic models better described the associations between CAG repeats and neuropsychological scores. CAG repeats in the HTT gene within the non-pathological range influenced neuropsychological performances depending on global cognitive status. The logarithmic model suggested that the positive effect of CAG repeats in SCD patients decreases as the number of repeats grows.
Collapse
Affiliation(s)
- Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
| | - Salvatore Mazzeo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
| | - Sonia Padiglioni
- Regional Referral Centre for Relational Criticalities, 50139 Tuscany Region, Italy;
- Unit Clinic of Organizations Careggi University Hospital, 50139 Florence, Italy
| | - Virginia Franchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (S.M.); (S.B.); (G.G.); (A.I.); (C.F.); (V.F.); (S.S.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| |
Collapse
|
26
|
The known burden of Huntington disease in the North of Scotland: prevalence of manifest and identified pre-symptomatic gene expansion carriers in the molecular era. J Neurol 2021; 268:4170-4177. [PMID: 33856548 PMCID: PMC8505295 DOI: 10.1007/s00415-021-10505-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Huntington disease prevalence was first estimated in Grampian, northern Scotland in 1984. Molecular testing has since increased ascertainment. OBJECTIVE To estimate the prevalence of manifest Huntington disease and identified pre-symptomatic gene expansion carriers (IPGEC) in northern Scotland, and estimate the magnitude of biases in prevalence studies that rely upon routine coding in primary care records. METHODS Cases were ascertained using North of Scotland genetic laboratory, clinic, and hospital records. Prevalence was calculated for manifest and IPGEC on 01/07/2016 and 01/01/2020 and compared with local published data. RESULTS The prevalence of manifest Huntington disease in northern Scotland in 2020 was 14.6 (95% CI 14.3-15.3) per 100,000, and of IPGEC was 8.3 (95% CI 7.8-9.2) per 100,000. Whilst the population of northern Scotland decreased by 0.05% between 2016 and 2020, the number of manifest and identified pre-symptomatic gene expansion carriers increased by 7.4% and 23.3%, respectively. Manifest disease in Grampian increased by 45.9% between 1984 and 2020. More women than men had a diagnosis. General Practice coding underestimated symptomatic molecularly confirmed prevalence by 2.2 per 100,000 people. CONCLUSION Even in an area with previously high ascertainment, there has been a 45.9% increase in manifest Huntington disease over the last 30 years. Within our catchment area, prevalence varies between health board regions with similar community-based services. Such variation in prevalence could have major drug cost and service delivery implications, especially if expensive, complexly administered therapies prove successful. Health services should gather accurate population-based data on a regional basis to inform service planning.
Collapse
|
27
|
Apolinário TA, Rodrigues DC, Lemos MB, Antão Paiva CL, Agostinho LA. Distribution of the HTT Gene A1 and A2 Haplotypes Worldwide: A Systematic Review. Clin Med Res 2020; 18:145-152. [PMID: 32878904 PMCID: PMC7735449 DOI: 10.3121/cmr.2020.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/15/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Huntington's disease (HD)(MIM:143100) is an severe autosomal dominant neurodegenerative disease caused by the dynamic expansion of CAG trinucleotides (> 35) in the HTT gene [Genomic Coordinates- (GRCh38):4:3,074,680-3,243,959]. OBJECTIVES The aim of this systematic review was to investigate the reported associations between the frequencies of the A1 and A2 haplotypes in HD-affected and non-affected populations from different countries on different continents, in order to demonstrate the overall profile of these haplotypes worldwide, pointing towards the most frequent haplotypes that could be useful for HTT mutant-specific allele silencing in different populations. METHODS Publications in MEDLINE (PubMed) and Embase from the last 10 years (PROSPERO CRD42018115282) were assessed. RESULTS A total of 20 articles from 113 were selected for evaluation in their entirety, and eight were eligible for this study. CONCLUSION Regardless of the size of the CAG tract, the articles included in this review demonstrate that populations with high HD prevalence present higher frequencies of the A1 or A2 haplotypes than populations exhibiting low HD prevalence, even when similar average CAG numbers are noted. Based on the presented articles, we suggest that the haplotypic profile is more closely related to the ancestral origin than to the size of the CAG tract. The identification of populations presenting a higher frequency of high-risk genotypes can contribute to more accurate genetic counseling, in addition to providing knowledge on HD epidemiology. According to the continued progress in the development of specific genetic silencing therapies by different research groups and pharmaceutical companies, such as haplotype targeting strategies for allele-specific HTT suppression, we conclude that the definition of haplotypes in phase with CAG expansions will contribute to the design of gene-silencing drugs specific for different populations worldwide.
Collapse
Affiliation(s)
- Thays Andrade Apolinário
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Dionatan Costa Rodrigues
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Mayra Braga Lemos
- Department of Genetics and Molecular Biology, Instituto Bimédico, UNIRIO, RJ, Brazil
| | - Carmen Lúcia Antão Paiva
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
- Department of Genetics and Molecular Biology, Instituto Bimédico, UNIRIO, RJ, Brazil
- Graduate Program in Molecular and Cell Biology, UNIRIO, RJ, Brazil
| | - Luciana Andrade Agostinho
- Graduate Program in Neurology, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
- University Center UNIFAMINAS - UNIFAMINAS, Muriaé, MG, Brazil
| |
Collapse
|
28
|
Magri S, Nanetti L, Mongelli A, Rizzo E, Taroni F, Mariotti C, Gellera C. Missing the pathological expansion in Huntington disease: de novo c.51C>G variant on the expanded allele causing intrafamilial allele dropout. Am J Med Genet A 2020; 185:397-400. [PMID: 33247537 DOI: 10.1002/ajmg.a.61973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 11/08/2022]
Abstract
Huntington disease (HD) is an autosomal dominant disease characterized by motor, behavioral, and cognitive symptoms, caused by the pathological expansion of more than 35 CAG/CAA repeats in the HTT gene. We describe the phenotype of a patient compatible with HD. Several family members were reported as affected, and a paternal cousin and his daughter carried 39 and 42 CAG/CAA. HD genetic testing in proband showed homozygosity for a 14 CAG/CAA allele. Considering the phenotype and family history, HTT gene sequence was performed, revealing heterozygosity for the c.51C>G variant that changes the last nucleotide before the CAG tract, causing misannealing of forward primer (HD344) and dropout of the expanded allele. Polymerase chain reaction (PCR) analysis performed with an alternative forward primer demonstrated a 41 CAG/CAA allele. The c.51C>G variant was not detected in the affected cousin, thus suggesting a de novo occurrence. The lack of biological samples from the proband father and grandmother prevented further investigations to establish in which family member the variant occurred. These data indicate that patients presenting HD phenotype, and homozygous for a normal HTT CAG/CAA allele should be thoroughly evaluated for the presence of a genetic variant, even de novo, within the repeat region that may hamper genetic diagnosis.
Collapse
Affiliation(s)
- Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Rizzo
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
29
|
Frequency of the loss of CAA interruption in the HTT CAG tract and implications for Huntington disease in the reduced penetrance range. Genet Med 2020; 22:2108-2113. [PMID: 32741964 PMCID: PMC7708297 DOI: 10.1038/s41436-020-0917-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose In some Huntington disease (HD) patients, the “loss of interruption” (LOI) variant eliminates an interrupting codon in the HTT CAG-repeat tract, which causes earlier age of onset (AOO). The magnitude of this effect is uncertain, since previous studies included few LOI carriers, and the variant also causes CAG size misestimation. We developed a rapid LOI detection screen, enabling unbiased frequency estimation among manifest HD patients. Additionally, we combined published data with clinical data from newly identified patients to accurately characterize the LOI’s effect on AOO. Methods We developed a LOI detection polymerase chain reaction (PCR) assay, and screened patients to estimate the frequency of the LOI variant and its effect on AOO. Results Mean onset for LOI carriers (n = 49) is 20.4 years earlier than expected based on diagnosed CAG size. After correcting for CAG size underestimation, the variant is still associated with onset 9.5 years earlier. The LOI is present in 1.02% of symptomatic HD patients, and in 32.2% of symptomatic reduced penetrance (RP) range patients (36–39 CAGs). Conclusion The LOI causes significantly earlier onset, greater than expected by CAG length, particularly in persons with 36–39 CAG repeats. Detection of this variant has implications for HD families, especially for those in the RP range.
Collapse
|
30
|
Tracing the mutated HTT and haplotype of the African ancestor who spread Huntington disease into the Middle East. Genet Med 2020; 22:1903-1908. [PMID: 32661355 DOI: 10.1038/s41436-020-0895-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We aimed to determine the origin and genetic characteristics of Huntington disease (HD) in the Middle East. METHODS We performed genetic and genealogical analyses to establish the ancestral origin of the HTT pathgenic variant from a large kindred from Oman (hereafter called the OM-HD-01 pedigree) by single-nucleotide polymorphism and dense haplotype analysis genotyping. RESULTS We traced the oldest ancestry of the largest, eight-generation, OM-HD-01 pedigree (n = 302 subjects, with 54 showing manifest HD) back to sub-Saharan Africa and identified a unique HD haplotype carried by all pedigree members, which consisted of portions of the C6 and C9 haplotypes and was carried by all affected members. Such a unique HD haplotype was of African origin and appeared to be associated with large CAG repeat expansions on average and high frequency of juvenile-onset HD. Three other families from the same area were also identified and found carrying a Caucasian HD haplotype A, also shared by most families of Arab ancestry. CONCLUSION Mutated HTT spread into Middle East with a unique haplotype of African origin, appeared to be associated with juvenile-onset, a HD condition frequently occurring in Black Africans, and may have a significant impact on further development of novel targeted genetic therapies.
Collapse
|
31
|
Sundblom J, Niemelä V, Ghazarian M, Strand AS, Bergdahl IA, Jansson JH, Söderberg S, Stattin EL. High frequency of intermediary alleles in the HTT gene in Northern Sweden - The Swedish Huntingtin Alleles and Phenotype (SHAPE) study. Sci Rep 2020; 10:9853. [PMID: 32555394 PMCID: PMC7299994 DOI: 10.1038/s41598-020-66643-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
Trinucleotide (CAG) repeat expansions longer than 39 in the huntingtin (HTT) gene cause Huntington's disease (HD). The frequency of intermediate alleles (IA) with a length of 27-35 in the general population is not fully known, but studied in specific materials connected to the incidence of HD. The Swedish Huntingtin Alleles and Phenotype (SHAPE) study aims to assess the frequency of trinucleotide repeat expansions in the HTT gene in north Sweden. 8260 individuals unselected for HD from the counties of Norr- and Västerbotten in the north of Sweden were included. DNA samples were obtained and analysis of the HTT gene was performed, yielding data on HTT gene expansion length in 7379 individuals. A high frequency of intermediate alleles, 6.8%, was seen. Also, individuals with repeat numbers lower than ever previously reported (<5) were found. These results suggest a high frequency of HD in the norther parts of Sweden. Subsequent analyses may elucidate the influence of IA:s on traits other than HD.
Collapse
Affiliation(s)
- Jimmy Sundblom
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.
| | - Valter Niemelä
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Maria Ghazarian
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Ann-Sofi Strand
- Science for Life Laboratory (SciLifeLab), Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Jan-Håkan Jansson
- Department of Public Health and Clinical Medicine, Research Unit Skellefteå, Umeå University, Umeå, Sweden
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Heart Centre, Umeå University, Umeå, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Frequency and distribution of polyQ disease intermediate-length repeat alleles in healthy Italian population. Neurol Sci 2020; 41:1475-1482. [PMID: 31940111 DOI: 10.1007/s10072-019-04233-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huntington disease (HD) and spinocerebellar ataxia type 1-2-17 (SCA1-2-17) are adult-onset autosomal dominant diseases, caused by triplet repeat expansions in the HTT, ATXN1, ATXN2, and TBP genes. Alleles with a repeat number just below the pathological threshold are associated with reduced penetrance and meiotic instability and are defined as intermediate alleles (IAs). OBJECTIVES We aimed to determine the frequencies of IAs in healthy Italian subjects and to compare the proportion of the IAs with the prevalence of the respective diseases. METHODS We analyzed the triplet repeat size in HTT, ATXN1, ATXN2, and TBP genes in the DNA samples from 729 consecutive adult healthy Italian subjects. RESULTS IAs associated with reduced penetrance were found in ATXN2 gene (1 subject, 0.1%) and TBP gene (0.82%). IAs at risk for meiotic instability were found in HTT (5.3%) and ATXN2 genes (2.7%). In ATXN1, we found a low percentage of IAs (0.4%). Alleles lacking the common CAT interruption within the CAG sequence were also rare (0.3%). CONCLUSIONS The high frequencies of IAs in HTT and ATXN2 genes suggest a correlation with the prevalence of the diseases in our population and support the hypothesis that IAs could represent a reservoir of new pathological expansions. On the opposite, ATXN1-IA were very rare in respect to the prevalence of SCA1 in our country, and TBP- IA were more frequent than expected, suggesting that other mechanisms could influence the occurrence of novel pathological expansions.
Collapse
|
33
|
Distribution of the CAG Triplet Repeat in ATXN1, ATXN3, and CACNA1A Loci in Peruvian Population. THE CEREBELLUM 2020; 19:527-535. [PMID: 32285347 DOI: 10.1007/s12311-020-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Spinocerebellar ataxia subtypes 1, 3, and 6 (SCA1, MJD/SCA3, and SCA6) are among the most prevalent autosomal dominant cerebellar ataxias worldwide, but their relative frequencies in Peru are low. Frequency of large normal (LN) alleles at spinocerebellar ataxia-causative genes has been proposed to be associated with disease prevalence. To investigate the allelic distribution of the CAG repeat in ATXN1, ATXN3, and CACNA1A genes in a Peruvian mestizo population and examine their association with the relative frequency of SCA1, MJD/SCA3, and SCA6 across populations. We genotyped 213 healthy mestizo individuals from Northern Lima, Peru, for ATXN1, ATXN3, and CACNA1A using polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE). We compared the frequency of LN alleles and relative disease frequency between populations. We also tested 40 samples for CAT repeat interruptions within the CAG tract of ATXN1. We found no association between disease frequency and population frequency of LN alleles at ATXN1 and ATXN3. All 40 ATXN1 samples tested for CAT interruptions were positive. Frequency of LN alleles at CACNA1A correlates with SCA6 frequency across several populations, but this effect was largely driven by data from a single population. Low frequency of SCA1 and MJD/SCA3 in Peru is not explained by frequency of LN alleles at ATXN1 and ATXN3, respectively. The observed correlation between CACNA1A LN alleles and SCA6 frequency requires further assessment.
Collapse
|
34
|
Apolinário TA, da Silva IDS, Agostinho LDA, Paiva CLA. Investigation of intermediate CAG alleles of the HTT in the general population of Rio de Janeiro, Brazil, in comparison with a sample of Huntington disease-affected families. Mol Genet Genomic Med 2020; 8:e1181. [PMID: 32067426 PMCID: PMC7196456 DOI: 10.1002/mgg3.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Huntington disease (HD) (MIM: 143100) is a severe autosomal dominant neurodegenerative disease caused by the expansion of CAG trinucleotides (>35) in the HTT. OBJECTIVE To investigate the frequency of intermediate CAG alleles (IAs) in individuals residing in Rio de Janeiro city with no familial history of HD (general population, GP) in comparison with a sample of individuals from families presenting with HD who were previously investigated by our group (affected sample, AS). RESULTS The frequency of normal CAG alleles was 96.2%, while that of IAs was 3.6%, and that of reduced penetrance alleles was 0.2% in the GP (n = 470 chromosomes); 7.2% (17/235 individuals) of the GP presented an IA in heterozygosis with a normal allele. There was no statistically significant difference between the frequencies of the IAs in the GP and in the AS (p = .9). The most frequent haplotype per normal allele was (CAG)17-(CCG)7 (101/461) and per IA was (CAG)27-(CCG)7 (6/17) in the GP. These haplotypes were also the most frequent in the normal and IA chromosomes of the AS, respectively. CONCLUSION The genetic profiles of the IAs obtained from GP and AS were rather similar. It is important to investigate the frequencies of the IAs because expansions arise from a step-by-step mechanism in which, during intergenerational transmission, large normal alleles can generate IAs, which are then responsible for generating de novo HD mutations. The genetic investigation of IAs in the GP was also important because it was focused on the population of Rio de Janeiro, an understudied group. CCG7 was the most frequent CCG allele in linkage disequilibrium with normal, intermediate, and expanded CAG alleles, similar to the Western Europe population. However, a more robust investigation, in conjunction with haplogroup determination (A, B, or C), will be required to elucidate the ancestral origin of the HTT mutations in Brazilians.
Collapse
Affiliation(s)
- Thays A. Apolinário
- Programa de Pós‐Graduação em NeurologiaUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
| | - Iane dos Santos da Silva
- Programa de Pós‐Graduação em Biologia Molecular e CelularUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
| | - Luciana de Andrade Agostinho
- Programa de Pós‐Graduação em NeurologiaUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
- Centro Universitário FAMINAS – UNIFAMINASMuriaéMGBrazil
- Fundação Cristiano Varella‐Hospital do CâncerMuriaéMGBrazil
| | - Carmen L. A. Paiva
- Programa de Pós‐Graduação em NeurologiaUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
- Programa de Pós‐Graduação em Biologia Molecular e CelularUniversidade Federal do Estado do Rio de Janeiro (UNIRIO)Rio de JaneiroRJBrazil
| |
Collapse
|
35
|
Gardiner SL, Boogaard MW, Trompet S, de Mutsert R, Rosendaal FR, Gussekloo J, Jukema JW, Roos RAC, Aziz NA. Prevalence of Carriers of Intermediate and Pathological Polyglutamine Disease-Associated Alleles Among Large Population-Based Cohorts. JAMA Neurol 2020; 76:650-656. [PMID: 30933216 DOI: 10.1001/jamaneurol.2019.0423] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Nine hereditary neurodegenerative diseases are known as polyglutamine diseases, including Huntington disease, 6 spinocerebellar ataxias (SCAs) (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17), dentatorubral-pallidoluysion atrophy, and spinal bulbar muscular atrophy. Objective To determine the prevalence of carriers of intermediate and pathological polyglutamine disease-associated alleles among the general population. Design, Setting, and Participants This observational cross-sectional study included data from 5 large European population-based cohorts that were compiled between 1997 and 2012, and the analyses were conducted in 2018. In total, 16 547 DNA samples were obtained from participants of the 5 cohorts. Individuals with a lifetime diagnosis of major depression were excluded (n = 2351). In the remaining 14 196 participants without an established polyglutamine disease diagnosis, the CAG repeat size in both alleles of all 9 polyglutamine disease-associated genes (PDAGs) (ie, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, HTT, ATN1, and AR) was determined. Exposure The number of CAG repeats in the alleles of the 9 PDAGs. Main Outcomes and Measures The number of individuals with alleles within the intermediate or pathological range per PDAG, as well as differences in sex, age, and body mass index between individuals carrying alleles within the normal or intermediate range and individuals carrying alleles within the pathological range of PDAGs. Results In the 14 196 analyzed participants (age range, 18-99 years; 56.3% female), 10.7% had a CAG repeat number within the intermediate range of at least 1 PDAG. Moreover, up to 1.3% of the participants had a CAG repeat number within the disease-causing range, predominantly in the lower pathological range associated with elderly onset. No differences in sex, age, or body mass index were found between individuals with CAG repeat numbers within the pathological range and individuals with CAG repeat numbers within the normal or intermediate range. Conclusions and Relevance These results indicate a high prevalence of individuals carrying intermediate and pathological ranges of polyglutamine disease-associated alleles among the general population. Therefore, a substantially larger proportion of individuals than previously estimated may be at risk of developing a polyglutamine disease later in life or bearing children with a de novo mutation.
Collapse
Affiliation(s)
- Sarah L Gardiner
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Merel W Boogaard
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jacobijn Gussekloo
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - N Ahmad Aziz
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
36
|
Kay C, Collins JA, Caron NS, Agostinho LDA, Findlay-Black H, Casal L, Sumathipala D, Dissanayake VHW, Cornejo-Olivas M, Baine F, Krause A, Greenberg JL, Paiva CLA, Squitieri F, Hayden MR. A Comprehensive Haplotype-Targeting Strategy for Allele-Specific HTT Suppression in Huntington Disease. Am J Hum Genet 2019; 105:1112-1125. [PMID: 31708117 PMCID: PMC6904807 DOI: 10.1016/j.ajhg.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a gain-of-function mutation in HTT. Suppression of mutant HTT has emerged as a leading therapeutic strategy for HD, with allele-selective approaches targeting HTT SNPs now in clinical trials. Haplotypes associated with the HD mutation (A1, A2, A3a) represent panels of allele-specific gene silencing targets for efficient treatment of individuals with HD of Northern European and indigenous South American ancestry. Here we extend comprehensive haplotype analysis of the HD mutation to key populations of Southern European, South Asian, Middle Eastern, and admixed African ancestry. In each of these populations, the HD mutation occurs predominantly on the A2 HTT haplotype. Analysis of HD haplotypes across all affected population groups enables rational selection of candidate target SNPs for development of allele-selective gene silencing therapeutics worldwide. Targeting SNPs on the A1 and A2 haplotypes in parallel is essential to achieve treatment of the most HD-affected subjects in populations where HD is most prevalent. Current allele-specific approaches will leave a majority of individuals with HD untreated in populations where the HD mutation occurs most frequently on the A2 haplotype. We further demonstrate preclinical development of potent and selective ASOs targeting SNPs on the A2 HTT haplotype, representing an allele-specific treatment strategy for these individuals. On the basis of comprehensive haplotype analysis, we show the maximum proportion of HD-affected subjects that may be treated with three or four allele targets in different populations worldwide, informing current allele-specific HTT silencing strategies.
Collapse
Affiliation(s)
- Chris Kay
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Jennifer A Collins
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Nicholas S Caron
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Luciana de Andrade Agostinho
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil; Centro Universitário UNIFAMINAS, Muriaé, MG 36880-000, Brazil; Hospital do Câncer de Muriaé, Muriaé, MG 36880-000, Brazil
| | - Hailey Findlay-Black
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Lorenzo Casal
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | | | | | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima 15003, Peru; Center for Global Health, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Fiona Baine
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa; Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| | - Jacquie L Greenberg
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Carmen Lúcia Antão Paiva
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil
| | - Ferdinando Squitieri
- Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Michael R Hayden
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
37
|
Alonso R, Pisa D, Carrasco L. Brain Microbiota in Huntington's Disease Patients. Front Microbiol 2019; 10:2622. [PMID: 31798558 PMCID: PMC6861841 DOI: 10.3389/fmicb.2019.02622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
One of the most important challenges facing medical science is to better understand the cause of neuronal pathology in neurodegenerative diseases. Such is the case for Huntington's disease (HD), a genetic disorder primarily caused by a triplet expansion in the Huntingtin gene (HTT). Although aberrant HTT is expressed from embryogenesis, it remains puzzling as to why the onset of disease symptoms manifest only after several decades of life. In the present study, we investigated the possibility of microbial infection in brain tissue from patients with HD, reasoning that perhaps mutated HTT could be deleterious for immune cells and neural tissue, and could facilitate microbial colonization. Using immunohistochemistry approaches, we observed a variety of fungal structures in the striatum and frontal cortex of seven HD patients. Some of these fungi were found in close proximity to the nucleus, or even as intranuclear inclusions. Identification of the fungal species was accomplished by next-generation sequencing (NGS). Interestingly, some genera, such as Ramularia, appeared unique to HD patients, and have not been previously described in other neurodegenerative diseases. Several bacterial species were also identified both by PCR and NGS. Notably, a curved and filamentous structure that immunoreacts with anti-bacterial antibodies was characteristic of HD brains and has not been previously observed in brain tissue from neurodegenerative patients. Prevalent bacterial genera included Pseudomonas, Acinetobacter, and Burkholderia. Collectively, our results represent the first attempt to identify the brain microbiota in HD. Our observations suggest that microbial colonization may be a risk factor for HD and might explain why the onset of the disease appears after several decades of life. Importantly, they may open a new field of investigation and could help in the design of new therapeutic strategies for this devastating disorder.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
38
|
Parkinsonism with a Hint of Huntington's from 29 CAG Repeats in HTT. Brain Sci 2019; 9:brainsci9100245. [PMID: 31546689 PMCID: PMC6826852 DOI: 10.3390/brainsci9100245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease is caused by at least 36 cytosine-adenine-guanine (CAG) repeats in an HTT gene allele, but repeat tracts in the intermediate range (27-35 repeats) also display a subtle phenotype. This patient had a slightly elongated CAG repeat tract (29 repeats), a prominent family history of Parkinson's disease (PD), and a clinical phenotype mostly consistent with PD, but early dystonia and poor levodopa response. Neurophysiological test results were more consistent with Huntington's disease (HD) than PD. It is suggested that the intermediate allele modulated the clinical phenotype of PD in this patient.
Collapse
|
39
|
Véliz-Otani D, Inca-Martinez M, Bampi GB, Ortega O, Jardim LB, Saraiva-Pereira ML, Mazzetti P, Cornejo-Olivas M. ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population. THE CEREBELLUM 2019; 18:841-848. [DOI: 10.1007/s12311-019-01057-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Savitt D, Jankovic J. Clinical phenotype in carriers of intermediate alleles in the huntingtin gene. J Neurol Sci 2019; 402:57-61. [DOI: 10.1016/j.jns.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
|
41
|
Migliore S, Jankovic J, Squitieri F. Genetic Counseling in Huntington's Disease: Potential New Challenges on Horizon? Front Neurol 2019; 10:453. [PMID: 31114543 PMCID: PMC6503085 DOI: 10.3389/fneur.2019.00453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/15/2019] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a rare, hereditary, neurodegenerative and dominantly transmitted disorder affecting about 10 out of 100,000 people in Western Countries. The genetic cause is a CAG repeat expansion in the huntingtin gene (HTT), which is unstable and may further increase its length in subsequent generations, so called anticipation. Mutation repeat length coupled with other gene modifiers and environmental factors contribute to the age at onset in the offspring. Considering the unpredictability of age at onset and of clinical prognosis in HD, the accurate interpretation, a proper psychological support and a scientifically sound and compassionate communication of the genetic test result are crucial in the context of Good Clinical Practice and when considering further potential disease-modifying therapies. We discuss various genetic test scenarios that require a particularly careful attention in psychological and genetic counseling and expect that the counseling procedures will require a constant update.
Collapse
Affiliation(s)
- Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
42
|
Ylönen S, Sipilä JOT, Hietala M, Majamaa K. HTT haplogroups in Finnish patients with Huntington disease. NEUROLOGY-GENETICS 2019; 5:e334. [PMID: 31086827 PMCID: PMC6481225 DOI: 10.1212/nxg.0000000000000334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Objective To study genetic causes of the low frequency of Huntington disease (HD) in the Finnish population, we determined HTT haplogroups in the population and patients with HD and analyzed intergenerational Cytosine-Adenosine-Guanosine (CAG) stability. Methods A national cohort of patients with HD was used to identify families with mutant HTT (mHTT). HTT haplogroups were determined in 225 archival samples from patients and from 292 population samples. CAG repeats were phased with HTT haplotypes using data from parent-offspring pairs and other mHTT carriers in the family. Results The allele frequencies of HTT haplotypes in the Finnish population differed from those in 411 non-Finnish European subjects (p < 0.00001). The frequency of haplogroup A was lower than that in Europeans and haplogroup C was higher. Haplogroup A alleles were significantly more common in patients than in controls. Among patients with HD haplotypes A1 and A2 were more frequent than among the controls (p = 0.003). The mean size of the CAG repeat change was +1.38 units in paternal transmissions being larger than that (−0.17) in maternal transmissions (p = 0.008). CAG repeats on haplogroup A increased by 3.18 CAG units in paternal transmissions, but only by 0.11 units in maternal transmissions (p = 0.008), whereas haplogroup C repeat lengths decreased in both paternal and maternal transmissions. Conclusions The low frequency of HD in Finland is partly explained by the low frequency of the HD-associated haplogroup A in the Finnish population. There were remarkable differences in intergenerational CAG repeat dynamics that depended on HTT haplotype and parent gender.
Collapse
Affiliation(s)
- Susanna Ylönen
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Jussi O T Sipilä
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Marja Hietala
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| | - Kari Majamaa
- Division of Clinical Neuroscience (S.Y., K.M.), Neurology, University of Oulu; Department of Neurology and Medical Research Center (S.Y., K.M.), Oulu University Hospital; Department of Neurology (J.O.T.S.), North Karelia Central Hospital, Siun Sote, Joensuu; Division of Clinical Neurosciences (J.O.T.S.), Turku University Hospital; Neurology (J.O.T.S.), University of Turku; Department of Clinical Genetics (M.H.), Turku University Hospital; and Institute of Biomedicine (M.H.), University of Turku, Finland
| |
Collapse
|
43
|
Morton AJ, Skillings EA, Wood NI, Zheng Z. Antagonistic pleiotropy in mice carrying a CAG repeat expansion in the range causing Huntington's disease. Sci Rep 2019; 9:37. [PMID: 30631090 PMCID: PMC6328633 DOI: 10.1038/s41598-018-37102-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Antagonist pleiotropy, where a gene exerts a beneficial effect at early stages and a deleterious effect later on in an animal’s life, may explain the evolutionary persistence of devastating genetic diseases such as Huntington’s disease (HD). To date, however, there is little direct experimental evidence to support this theory. Here, we studied a transgenic mouse carrying the HD mutation with a repeat of 50 CAGs (R6/2_50) that is within the pathological range of repeats causing adult-onset disease in humans. R6/2_50 mice develop characteristic HD brain aggregate pathology, with aggregates appearing predominantly in the striatum and cortex. However, they show few signs of disease in their lifetime. On the contrary, R6/2_50 mice appear to benefit from carrying the mutation. They have extended lifespans compared to wildtype (WT) mice, and male mice show enhanced fecundity. Furthermore, R6/2_50 mice outperform WT mice on the rotarod and show equal or better performance in the two choice discrimination task than WT mice. This novel mouse line provides direct experimental evidence that, although the HD mutation causes a fatal neurodegenerative disorder, there may be premorbid benefits of carrying the mutation.
Collapse
Affiliation(s)
- A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom.
| | - E A Skillings
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - N I Wood
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - Z Zheng
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| |
Collapse
|
44
|
Testa CM, Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J Neurol Sci 2019; 396:52-68. [DOI: 10.1016/j.jns.2018.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
45
|
Bertolin C, Querin G, Martinelli I, Pennuto M, Pegoraro E, Sorarù G. Insights into the genetic epidemiology of spinal and bulbar muscular atrophy: prevalence estimation and multiple founder haplotypes in the Veneto Italian region. Eur J Neurol 2018; 26:519-524. [PMID: 30351503 DOI: 10.1111/ene.13850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Literature data on spinal and bulbar muscular atrophy (SBMA) epidemiology are limited and restricted to specific populations. The aim of our study was to accurately collect information about SBMA patients living in the Veneto region in Italy to compute reliable epidemiological data. Androgen receptor (AR) lineages were genotyped to evaluate the presence of a founder effect. METHODS A prevalence survey considering all SBMA patients diagnosed in the Italian Veneto region on 31 January 2018 was carried out. The presence of different haplotypes obtained genotyping 15 polymorphic markers (single nucleotide polymorphisms and short tandem repeats) around the AR gene was evaluated. RESULTS Based on 68 patients, the punctual prevalence of the disease on 31 January 2018 was 2.58/100 000 (95% confidence interval 1.65-3.35) in the male population. Five different haplotypes were identified, confirming the existence of multiple founder effects. It was also observed that, within the same haplotype, patients had a similar CAG repeat number (P-value < 0.001). CONCLUSIONS A reliable estimation of SBMA prevalence in the Italian Veneto region was calculated which does not seem to be affected by a strong founder effect. Moreover, our data suggest that the length of the CAG expansion could be preserved in patients harbouring the same haplotype.
Collapse
Affiliation(s)
- C Bertolin
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Querin
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, Paris, France
| | - I Martinelli
- Department of Neurosciences, University of Padova, Padova, Italy
| | - M Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Myology Center, University of Padova, Padova, Italy.,Padova Neuroscience Center, Padova, Italy
| | - E Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
46
|
Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2018; 14:480-496. [PMID: 32104476 PMCID: PMC7032222 DOI: 10.1016/j.ajps.2018.09.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington disease and amyotrophic lateral sclerosis throw a heavy burden on families and society. Related scientific researches make tardy progress. One reason is that the known pathogeny is just the tip of the iceberg. Another reason is that various physiological barriers, especially blood-brain barrier (BBB), hamper effective therapeutic substances from reaching site of action. Drugs in clinical treatment of neurodegenerative diseases are basically administered orally. And generally speaking, the brain targeting efficiency is pretty low. Nano-delivery technology brings hope for neurodegenerative diseases. The use of nanocarriers encapsulating molecules such as peptides and genomic medicine may enhance drug transport through the BBB in neurodegenerative disease and target relevant regions in the brain for regenerative processes. In this review, we discuss BBB composition and applications of nanocarriers -liposomes, nanoparticles, nanomicelles and new emerging exosomes in neurodegenerative diseases. Furthermore, the disadvantages and the potential neurotoxicity of nanocarriers according pharmacokinetics theory are also discussed.
Collapse
Affiliation(s)
- Xiaoqian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Long JD, Lee JM, Aylward EH, Gillis T, Mysore JS, Abu Elneel K, Chao MJ, Paulsen JS, MacDonald ME, Gusella JF. Genetic Modification of Huntington Disease Acts Early in the Prediagnosis Phase. Am J Hum Genet 2018; 103:349-357. [PMID: 30122542 DOI: 10.1016/j.ajhg.2018.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022] Open
Abstract
Age at onset of Huntington disease, an inherited neurodegenerative disorder, is influenced by the size of the disease-causing CAG trinucleotide repeat expansion in HTT and by genetic modifier loci on chromosomes 8 and 15. Stratifying by modifier genotype, we have examined putamen volume, total motor score (TMS), and symbol digit modalities test (SDMT) scores, both at study entry and longitudinally, in normal controls and CAG-expansion carriers who were enrolled prior to the emergence of manifest HD in the PREDICT-HD study. The modifiers, which included onset-hastening and onset-delaying alleles on chromosome 15 and an onset-hastening allele on chromosome 8, revealed no major effect in controls but distinct patterns of modification in prediagnosis HD subjects. Putamen volume at study entry showed evidence of reciprocal modification by the chromosome 15 alleles, but the rate of loss of putamen volume was modified only by the deleterious chromosome 15 allele. By contrast, both alleles modified the rate of change of the SDMT score, but neither had an effect on the TMS. The influence of the chromosome 8 modifier was evident only in the rate of TMS increase. The data indicate that (1) modification of pathogenesis can occur early in the prediagnosis phase, (2) the modifier loci act in genetic interaction with the HD mutation rather than through independent additive effects, and (3) HD subclinical phenotypes are differentially influenced by each modifier, implying distinct effects in different cells or tissues. Together, these findings indicate the potential benefit of using genetic modifier strategies for dissecting the prediagnosis pathogenic process in HD.
Collapse
|
48
|
Krause A, Seymour H, Ramsay M. Common and Founder Mutations for Monogenic Traits in Sub-Saharan African Populations. Annu Rev Genomics Hum Genet 2018; 19:149-175. [DOI: 10.1146/annurev-genom-083117-021256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review highlights molecular genetic studies of monogenic traits where common pathogenic mutations occur in black families from sub-Saharan Africa. Examples of founder mutations have been identified for oculocutaneous albinism, cystic fibrosis, Fanconi anemia, and Gaucher disease. Although there are few studies from Africa, some of the mutations traverse populations across the continent, and they are almost all different from the common mutations observed in non-African populations. Myotonic dystrophy is curiously absent among Africans, and nonsyndromic deafness does not arise from mutations in GJB2 and GJB7. Locus heterogeneity is present for Huntington disease, with two common triplet expansion loci in Africa, HTT and JPH3. These findings have important clinical consequences for diagnosis, treatment, and genetic counseling in affected families. We currently have just a glimpse of the molecular etiology of monogenic diseases in sub-Saharan Africa, a proverbial “ears of the hippo” situation.
Collapse
Affiliation(s)
- Amanda Krause
- Division of Human Genetics, National Health Laboratory Service, and Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service, and Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service, and Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|