1
|
Perry LC, Chevalier N, Luciano M. GenomicSEM Modelling of Diverse Executive Function GWAS Improves Gene Discovery. Behav Genet 2025; 55:71-85. [PMID: 39891803 PMCID: PMC11882726 DOI: 10.1007/s10519-025-10214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
Previous research has supported the use of latent variables as the gold-standard in measuring executive function. However, for logistical reasons genome-wide association studies (GWAS) of executive function have largely eschewed latent variables in favour of singular task measures. As low correlations have traditionally been found between individual executive function (EF) tests, it is unclear whether these GWAS have truly been measuring the same construct. In this study, we addressed this question by performing a factor analysis on summary statistics from eleven GWAS of EF taken from five studies, using GenomicSEM. Models demonstrated a bifactor structure consistent with previous research, with factors capturing common EF and working memory- specific variance. Furthermore, the GWAS performed on this model identified 20 new genomic risk loci for common EF and 4 for working memory reaching genome-wide significance beyond what was found in the constituent GWAS, together resulting in 29 newly mapped EF genes. These results help to clarify the underlying genetic structure of EF and support the idea that EF GWAS are capable of measuring genetic variance related to latent EF constructs even when not using factor scores. Furthermore, they demonstrate that GenomicSEM can combine GWAS with divergent and non-ideal measures of the same phenotype to improve statistical power.
Collapse
Affiliation(s)
- Lucas C Perry
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
| | - Nicolas Chevalier
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Michelle Luciano
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Sudre G, Gildea DE, Shastri GG, Sharp W, Jung B, Xu Q, Auluck PK, Elnitski L, Baxevanis AD, Marenco S, Shaw P. Mapping the cortico-striatal transcriptome in attention deficit hyperactivity disorder. Mol Psychiatry 2023; 28:792-800. [PMID: 36380233 PMCID: PMC9918667 DOI: 10.1038/s41380-022-01844-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Despite advances in identifying rare and common genetic variants conferring risk for ADHD, the lack of a transcriptomic understanding of cortico-striatal brain circuitry has stymied a molecular mechanistic understanding of this disorder. To address this gap, we mapped the transcriptome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from 60 individuals with and without ADHD. Significant differential expression of genes was found in the anterior cingulate cortex and, to a lesser extent, the caudate. Significant downregulation emerged of neurotransmitter gene pathways, particularly glutamatergic, in keeping with models that implicate these neurotransmitters in ADHD. Consistent with the genetic overlap between mental disorders, correlations were found between the cortico-striatal transcriptomic changes seen in ADHD and those seen in other neurodevelopmental and mood disorders. This transcriptomic evidence points to cortico-striatal neurotransmitter anomalies in the pathogenesis of ADHD, consistent with current models of the disorder.
Collapse
Affiliation(s)
- Gustavo Sudre
- Social and Behavioral Research Branch, Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Gauri G Shastri
- Office of the Scientific Director, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Wendy Sharp
- Office of the Scientific Director, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Benjamin Jung
- Social and Behavioral Research Branch, Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Qing Xu
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Pavan K Auluck
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Laura Elnitski
- Translational and Functional Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Social and Behavioral Research Branch, Division of Intramural Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA.
- Office of the Scientific Director, Division of Intramural Research, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Ciobanu LG, Stankov L, Schubert KO, Amare AT, Jawahar MC, Lawrence-Wood E, Mills NT, Knight M, Clark SR, Aidman E. General intelligence and executive functioning are overlapping but separable at genetic and molecular pathway levels: An analytical review of existing GWAS findings. PLoS One 2022; 17:e0272368. [PMID: 36251633 PMCID: PMC9576059 DOI: 10.1371/journal.pone.0272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
Understanding the genomic architecture and molecular mechanisms of cognitive functioning in healthy individuals is critical for developing tailored interventions to enhance cognitive functioning, as well as for identifying targets for treating impaired cognition. There has been substantial progress in uncovering the genetic composition of the general cognitive ability (g). However, there is an ongoing debate whether executive functioning (EF)–another key predictor of cognitive health and performance, is separable from general g. To provide an analytical review on existing findings on genetic influences on the relationship between g and EF, we re-analysed a subset of genome-wide association studies (GWAS) from the GWAS catalogue that used measures of g and EF as outcomes in non-clinical populations. We identified two sets of single nucleotide polymorphisms (SNPs) associated with g (1,372 SNPs across 12 studies), and EF (300 SNPs across 5 studies) at p<5x10-6. A comparative analysis of GWAS-identified g and EF SNPs in high linkage disequilibrium (LD), followed by pathway enrichment analyses suggest that g and EF are overlapping but separable at genetic variant and molecular pathway levels, however more evidence is required to characterize the genetic overlap/distinction between the two constructs. While not without limitations, these findings may have implications for navigating further research towards translatable genetic findings for cognitive remediation, enhancement, and augmentation.
Collapse
Affiliation(s)
- Liliana G. Ciobanu
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- * E-mail:
| | - Lazar Stankov
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - K. Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Mental Health Services, Adelaide, SA, Australia
| | - Azmeraw T. Amare
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
| | | | | | - Natalie T. Mills
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Matthew Knight
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Weapons and Combat Systems Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| | - Scott R. Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Aidman
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Land Division, Defence Science & Technology Group, Edinburgh, SA, Australia
| |
Collapse
|
4
|
Mind-body exercise affects attention switching and sustained attention in female adults with Attention Deficit/Hyperactivity Disorder: A randomized, controlled trial with 6-month follow-up. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|